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Abstract 

The overwhelming majority of efforts to cultivate early mathematical thinking rely 

primarily on counting and associated natural number concepts. Unfortunately, natural 

numbers and discretized thinking do not align well with a large swath of the 

mathematical concepts we wish for children to learn. This misalignment presents an 

important impediment to teaching and learning. We suggest that one way to circumvent 

these pitfalls is to leverage students’ non-numerical experiences that can provide 

intuitive access to foundational mathematical concepts. Specifically, we advocate for 

explicitly leveraging a) students’ perceptually based intuitions about quantity and b) 

students’ reasoning about change and variation, and we address the affordances 

offered by this approach. We argue that it can support ways of thinking that may at 

times align better with to-be-learned mathematical ideas, and thus may serve as a 

productive alternative for particular mathematical concepts when compared to number. 

We illustrate this argument using the domain of ratio, and we do so from the distinct 

disciplinary lenses we employ respectively as a cognitive psychologist and as a 

mathematics education researcher. Finally, we discuss the potential for productive 

synthesis given the substantial differences in our preferred methods and general 

epistemologies. 
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Introduction: The Need to Consider Alternatives to Natural 

Number Based Instruction 

Mathematical literacy and engagement is essential for participation in modern 

society, with research showing success in mathematics to be an important determinant 

of children’s later educational, occupational, and even health prospects (Cross, Woods, 

& Schweingruber, 2009; Garcia-Retamero, Andrade, Sharit, & Ruiz, 2015; Kilpatrick, 

Swafford, & Findell, 2001; Moses & Cobb, 2001). Generally, the acquisition of a robust 

sense of number is taken to be an essential first step on the road to mathematical 

competence (Landerl, Bevan, & Butterworth, 2004; National Mathematics Advisory 

Panel, 2008). Unfortunately, most efforts to cultivate early number sense rely on count-

based, discretized natural numberi principles – principles that do not align well with a 

large swath of the mathematical concepts we wish for children to learn. We argue that 

this misalignment presents an important impediment to teaching and learning. We 

further suggest that one way to circumvent these pitfalls is to leverage children’s non-

numerical experiences that can provide intuitive access to foundational mathematical 

concepts.  

In this piece, we explicitly critique the current practice of building nearly all of 

early mathematics out of counting and associated natural number concepts. Although 

natural numbers provide an undoubtedly flexible and powerful tool for supporting 

mathematical thinking, we argue that the practice of introducing almost every 

fundamental concept in terms of natural numbers often comes with a cost. Namely, to 

the extent that natural number concepts are misaligned with to-be-learned concepts, 

they are unlikely to serve as adequate foundations for building understanding of such 
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concepts. There are many ways to conceive of these costs, depending upon one’s 

disciplinary commitments. They can be characterized in terms of negative transfer 

(Novick, 1988), inhibiting schemes (Streefland, 1991), change-resistance (McNeil, 

2014) and epistemological obstacles (Sierpińska, 1987), to name but a few. Our aim is 

not to provide an exhaustive list of the ways in which these costs have been 

characterized, but to highlight a family of related costs across disciplines that may apply 

to overreliance on natural number and to underscore the idea that explicit concern for 

these costs should inform our theory and practice. Moreover, it is important to 

consciously recognize  

1) that there are often multiple alternative choices, symbolic and nonsymbolic, 

available for representing early mathematical concepts,  

2) that each of these alternatives typically comes with conceptual affordances and 

constraints, and  

3) that number is no exception to points 1 & 2.  

Ultimately, we advocate for explicit leveraging of perceptually based intuitions about 

quantity that may offer different affordances than symbolic numbers. These intuitions 

can support ways of thinking that may at times align better with to-be-learned 

mathematical ideas, and thus may serve as a productive alternative for particular 

mathematical concepts when compared to number.  

The Supremacy of Natural Number 

  Natural number abounds in K-12 mathematics in the U.S., with standard 

curricular and instructional approaches building early mathematics from counting 

activities. Students build from counting to whole number addition and subtraction, 
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followed by multiplication (initially as repeated addition) and division (initially as 

partitioning). Students are then introduced to negative numbers and rational numbers, 

and only reach ideas about the real numbers in advanced algebra courses in high 

school (Devlin, 2012; Dougherty, 2008). The primacy of natural number is reflected in 

policy and standards documents such as the Common Core State Standards for 

Mathematics (Council of Chief State School Officers, 2010), as well as in the vast 

majority of elementary and middle school curricula (e.g., Lappan et al., 2006; Putnam, 

2003; Thompson & Senk, 2003). This approach obscures the fact that, although 

numerical representations are convenient vehicles for communicating mathematical 

concepts, they are seldom the only effective representations available.  

Overreliance on number can lead educators and learners to focus on number 

symbols themselves as opposed to the referent fields to which they should refer 

(compare with Kaput, Blanton, & Moreno, 2008). Consider the major Common Core 

Mathematical Content Standards for Kindergarten (Council of Chief State School 

Officers, 2010). Although the standards include two sets of ideas that are not 

exclusively numerical (identify, describe, compare, and compose shapes and describe 

and compare measurable attributes), the remaining content standards are exclusively 

numerical. Broadly, the overwhelming majority of the content standards in early 

elementary are focused on counting and natural number, with many of the ideas about 

comparison and magnitude subsumed under the counting and cardinality strands. This 

is despite the fact that the fundamental notion of relative magnitude and the consequent 

ideas of greater than and less than pervade everyday life and draw on children’s natural 

experiences. Even though children without numerical training can immediately choose 



Running Head: NATURAL ALTERNATIVES  
 

6 

the taller of two people or the larger of two pieces of cake – comparisons involving 

continuous (Smith, 2012) quantitiesii – our policies are structured so that early numerical 

comparison is unnecessarily tied to natural number symbols and the discrete quantity 

logic they represent. In this case, we have privileged number symbols and relegated the 

core to-be-learned concept to the background. Moreover, this step is wholly 

unnecessarily given that children’s perceptual abilities provide them intuitive access to 

spatial relations that easily illustrate comparative magnitude (Brannon, Lutz & Cordes, 

2006; Davydov & Tsvetkovich, 1991; Dougherty, 2008; Dougherty & Slovin, 2004; 

Feigenson, Dehaene, & Spelke; Gao, Levine & Huttenlocher, 2000; Schmittau & Morris, 

2004).  

This is but one example of what we argue is a more general pattern. In building 

the majority of early mathematics out of counting and natural number, we have chosen 

to privilege a particular conceptual basis for much of children’s mathematical thinking, 

and this choice has a number of drawbacks. For instance, prior research has argued 

convincingly that teaching the multiplication operation primarily in terms of repeated 

addition of whole numbers can hamper more nuanced understandings of multiplication 

later on (e.g., Fischbein, Deri, Nello, & Marino, 1985; Harel, Behr, Post, & Lesh, 1994; 

Smith, 2012; Steffe, 1994; Thompson & Saldhana, 2003; Verschaffel, De Corte, & Van 

Coillie, 1988). Students persist in conceiving of multiplication as repeated addition, 

sometimes into secondary school (Anghileri, 1999; Nunes & Bryant, 1996; Siegler, 

Thompson & Schneider, 2011), which can lead not only to misconceptions such as 

“multiplication makes bigger” (Greer, 1988), but also to difficulties conceiving of 

multiplication with non-natural numbers, envisioning multiplication as continuous 
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scaling, and understanding the inverse relationship between multiplication and division 

(e.g. Smith, 2012).  

Another major deleterious effect of overreliance on counting and natural number 

is particularly dangerous because it is so counterintuitive: Namely, overreliance on 

natural number can impoverish the broader concept of number itself. Teaching number 

as fundamentally tied to counting obscures key continuities shared by all real numbers – 

for instance, that they can all be ordered and assigned specific locations on number 

lines (Okamoto & Case, 1996; Siegler et al., 2011). This development of discretized, 

count-based conceptions of number can lead to deep confusion when natural number 

symbols are concatenated to represent more advanced numerical concepts such as 

ratios and associated rational number concepts. This confusion is deeply implicated in 

prevalent misunderstandings such as the whole number bias with fractions, the 

tendency to use the natural number counting scheme to interpret fractions (e.g., judging 

1/8 as larger than 1/6 because 8 is larger than 6; Mack, 1990; Ni & Zhou, 2005). It is 

important to note that these misunderstandings are not limited to children; even 

teachers and other highly educated adults fall prey to similar difficulties that can be 

traced back to overreliance on natural number concepts (Newton, 2008; Reyna & 

Brainerd, 2008; Stigler, Givvin, & Thompson, 2010). Thus, even with respect to the 

fundamental concept of number, we argue that number symbols are not always the best 

place to start. Even in the domain of number, children’s perceptions of nonsymbolic 

spatial figures and their embodied experiences can sometimes provide intuitive 

semantic access that can be purposefully recruited to make symbols more meaningful 

(Lewis, Matthews & Hubbard, 2015). 
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An Alternate Conceptual Basis 

 There is evidence that children can build up mathematical thinking in ways that 

are not always bound to natural number (e.g., Davydov & Tsvetkovich, 1991; Dougherty 

et al., 2008). This is clear insofar as much of advanced mathematical thinking is 

supported by various types of visual representations (e.g., Ainsworth 2006; Nistal, Van 

Dooren, Clarebout, Elen, & Verschaffel, 2009; Rau, 2016) and embodied experiences 

(Abrahamson, 2012; Alibali & Nathan, 2012; Ellis, Özgür, Kulow, Williams, & Amidon, 

2016) that are not numerical in nature. Early mathematics can be built from activities 

that focus on continuous quantities and consideration of magnitudes qua magnitudes – 

as amounts of ‘stuff’ as opposed to a measure that is explicitly numerical. Activities 

embracing these alternate representations are not merely inferior proxies for numerical 

representations. In fact, they offer different affordances than what is offered by activities 

reliant on symbolic numbers, harnessing children’s everyday experiences with amount, 

length, height, movement, volume, and other aspects of their experiential worlds. In the 

process, such an instructional focus can recruit perceptual apparatuses that evolved 

over millennia that can provide deeply intuitive semantic access to fundamental 

mathematical concepts (such as greater than or less than or continuity) independently 

of numbers.  

Indeed, some researchers have proposed that the ability to engage with a 

generalized sense of magnitude is psychologically prior to the conception of number, 

laying the foundation for its emergence (e.g., Leibovich, Katzin, Harel, & Henik A, 

2016; Mix, Huttenlocher, & Levine, 2002; Newcombe, Levine, & Mix, 2015). A larger 

corpus of psychological literature shows intimate connections between space and 
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number or time and number without committing to which is logically prior (e.g., 

Dehaene, Dupoux, & Mehler, 1990; Hubbard, Piazza, Pinel, & Dehaene, 2005; Walsh, 

2003). Research showing a psychological connection between perceived magnitudes 

and symbolic numerical magnitudes is perhaps most interesting for what it may suggest 

about the universe of building blocks available for supporting mathematical thinking 

(Dehaene et al., 2003; Fischer, Castel, Dodd, & Pratt, 2003; Henik & Tzelgov, 1982; 

Hubbard et al., 2005; Matthews & Lewis, 2016; Newcombe et al., 2016; Odic, Libertus, 

Feigenson, & Halberda, 2013; Walsh, 2003) A tight connection between symbolic 

numerical cognition and nonsymbolic perceptual abilities suggests that nonsymbolic 

abilities may function as alternative foundations for the same topics we often choose to 

represent with numbers. It may in fact be that fully embracing the power of the 

nonsymbolic thinking is the key to maximizing meaningful thinking with mathematical 

symbols.  

In the sections that follow, we will unpack this argument using the domain of 

ratio, and we will do so from the distinct disciplinary lenses we employ respectively as a 

cognitive psychologist (Matthews) and as a mathematics education researcher (Ellis). 

We chose to focus on ratio for two reasons. First, researchers from mathematics 

education research and from psychology, despite substantial differences in approach, 

both agree that understanding ratio – and associated rational number concepts – is 

critical (Anderson, 1969; Beckmann & Izsák, 2015; Behr Lesh Post Silver, 1983; Lobato 

& Ellis, 2010; National Council of Teachers of Mathematics, 2000; National Mathematics 

Advisory Panel, 2008; Siegler et al., 2012; Siegler, Fazio, Bailey, & Zhou, 2013). Ratio 

is a foundational topic that supports student’s understanding of probability, function, and 
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rates of change that form the basis of algebra, calculus and other higher mathematics. 

Second, it represents a conceptual domain that continues to provide considerable 

difficulty for learners despite decades of research dedicated to study of its acquisition 

(e.g., Anderson, 1969; Cramer & Post, 1993; Ellis, 2013; Latino, 1955; Lesh, Post, & 

Behr, 1988; Lobato & Ellis, 2010; Novillis, 1976; Smith, 2002).  

In the section immediately below, one of us (Matthews) will argue 1) that 

research from multiple fields suggests that humans have a perceptually-based 

sensitivity to nonsymbolic ratio that emerges prior to formal instruction and 2) that 

leveraging these intuitions may prove an effective base for building up formal ratio 

concepts. In the next, (Ellis) will address how ratio can be developed from magnitude 

comparison, and will propose a way to foster the development of internalized-ratio from 

children’s perception and mathematization of covarying quantities. In the final section, 

we will discuss how the divergence in our general methods presents opportunities for 

synthesis. We ultimately underscore the importance of the convergence in our 

conclusions given the backdrop of substantial differences in methods and philosophy.  

Ratio as Percept (Matthews) 

In a recent series of papers, my colleagues and I have argued for a cognitive 

primitives approach to grounding ratio concepts (Lewis et al., 2015; Matthews & 

Chesney, 2015; Matthews & Hubbard, 2016; Matthews & Lewis, 2016; Matthews et al., 

2016). That is, I have argued that a considerable swath of empirical research suggests 

that human beings have intuitive, perceptually-based access to primitive ratio concepts 

when they are instantiated using nonsymbolic graphical representations (Figure 1). My 

colleagues and I have dubbed this basic perceptual apparatus the Ratio Processing 
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System (RPS) and have called for new research exploring its limits and how it might be 

used to support mathematical reasoning (Lewis et al., 2015; compare with Jacob, 

Vallentin & Nieder, 2012). Unfortunately, I have often been so concerned with 

explaining my experimental protocols and results that I have failed to give an adequate 

treatment of what I mean when I use the word ‘ratio.’ As a result, some colleagues have 

accused me of playing fast and loose with the terms ratio, fraction, and rational number 

– often ignoring the distinctions between formal definitions of the terms.  

 

Figure 1. Sample nonsymbolic ratios used in nonsymbolic comparison tasks. Ratios are 

composed of various type of nonsymbolic quantities, including (a & c) dot arrays, (b) line 

segments, and (c) circle areas. Note that dot arrays, while countable, are often used in 

task where the number of dots is high (i.e. > 40) and the time limit is set low (i.e. < 2 

seconds) to preclude the possibility of counting. In these instances, dot array 

numerosity is processed perceptually (for an example, see Matthews & Chesney, 2015). 

For my part, I plead guilty to these charges. Indeed, psychologists elide these 

distinctions every day. Even taking a most cursory glance through a psychology journal, 

one can find many charts with a y-axis marked “proportion correct” to indicate frequency 

of correct response, which is not true to the mathematically precise definition of 

proportion as a statement that two ratios or fractions are equal. Devoted formalists 

shudder! But should we gasp too, when we find the first definition of proportion in the 

a) b) c) 
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Oxford English Dictionary is “A part, share, or number considered in comparative 

relation to a whole” (“proportion,” 2016)? What about when the 2nd definition is “the 

relationship of one thing to another in terms of quantity, size, or number; the ratio”? I 

cite these definitions not because I take the dictionary to be canon, but because I 

respect Wittgenstein’s (2001) argument that much of what we know about a word and 

its associated concepts emerges from the way it is used in everyday language games. 

The simple fact is that we often use the terms ratio, fraction, proportion, percentage, 

largely interchangeably in everyday language. This is not the result of some linguistic 

depravity. Rather, it reflects the fact that the language games in which these specific 

words are caught up are general games involving the broader notions associated with 

the rational number construct. All share reference to relational quantities that are at root 

characterized by a concern for how one quantity stands in relation to another. When I 

use the word ratio, I refer to this generalized sense of a quantity emerging from a 

comparative relationship between pairs of quantities, and I similarly refer to this 

generalized sense when I use the word fraction. Thus, for my purposes, the distinctions 

between the terms are largely immaterial.  

My approach is motivated in part by Kieren’s (1976, 1980) influential treatments 

of rational number concepts. He argued that rational number should be a seen as a 

mega-concept involving many interwoven subconstructs or interpretations, including: 

1. Rational numbers as fractions 

2. Rational numbers as decimal fractions 

3. Rational numbers as equivalence classes of fractions  

4. Rational numbers as ratios of integers 
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5. Rational numbers as operators 

6. Rational numbers as elements of the quotient field 

7. Rational numbers as measures or points on a number line. 

For Kieren, robust understanding of rational number depends upon having adequate 

experience with their many interpretations. Although the taxonomies vary somewhat, 

several prominent researchers have endorsed such a mega-concept view (e.g., Behr et 

al., 1983; Charalambous & Pitta-Pantazi, 2006; Novillis, 1976), with Ohlsson (1988) 

arguing that learners’ difficulties with rational numbers stem in large part from “the 

bewildering array of many related, but only partially overlapping ideas that surround 

fractions” (p53). 

 Given the complexity of the rational number mega-concept, it is arguably 

important to find interpretations that square well with children’s intuitions. To that end, 

my research has focused on promoting the addition of an eighth interpretation to the list 

above that essentially combines subconstructs #4 and #7: rational numbers as ratios of 

nonsymbolic quantities. This nonsymbolic ratio interpretation is one more or less 

formulated by Carraher (1996) when he drew the distinction between a ratio of 

quantities and a ratio of numbers. According to this interpretation, the term ratio need 

not exclusively refer to a multiplicative relationship between numbers; it can also 

correspond to a similar relationship between two nonsymbolic quantities, such as the 

ratio of the lengths of two line segments considered in tandem (e.g., “1/2” instantiated 

as ). Here, each of component line segments is an extensive quantity, 

whose magnitudes can be defined in absolute terms by their lengths considered in 
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isolation. In contrast, the ratio of these nonsymbolic magnitudes is an intensive quantity 

determined by the ratio between them (Lesh, Post, & Behr, 1988).  

This nonsymbolic perspective is consistent with Davydov’s project to ground 

fractions instruction in intuitions about measurement (Davydov & Tsvetkovich, 1991; 

Dougherty, 2008), discussed in more detail by Ellis below. In contrast to Davydov, 

however, my focus is on nonsymbolic ratio as percept – as an intensive quantity that 

can be perceived in an analog fashion (i.e., in an intuitive, nonverbal, and approximate 

form). As such, its essence is nonverbal, further eliding the distinctions among ratio, 

fraction, percentage and other verbally mediated descriptions of rational number 

concept (see also Van den Brink & Streefland, 1979).  

It is noteworthy that ratios of nonsymbolic quantities are actually much more 

expansive in reach than the typical conception of ratio introduced with natural numbers. 

When composed of continuous nonsymbolic quantities such as line segment lengths, 

the ratios formed extend beyond those corresponding to rational numbers and include 

all real numbers. Pi, the ratio between a circle’s circumference and its diameter, is one 

such “irrational” ratio that corresponds to a pair of line segments similar to those in 

Figure 1. The ratio of an equilateral triangle’s altitude to one of its sides is another. 

Indeed, one important aspect of the nonsymbolic ratio is that it can both provide intuitive 

access to rational numbers and simultaneously provide intuitive access to other classes 

of numbers, including whole numbers and irrational numbers (see Matthews & Hubbard, 

2016; compare with Siegler et al., 2011). Perhaps what is most appealing about the 

nonsymbolic ratio interpretation is that it does not fundamentally rely upon number 
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symbols to convey the generalized sense of rational number as a quantity emerging 

from a relationship between pairs of quantity. 

The Challenge of Building Ratios from Natural Numbers 

 It is arguable that the single greatest shortcoming of typical approaches to 

teaching rational numbers lies in their dependence upon natural number symbols and 

count-based logic. Although number symbols are typically seen as relatively abstract 

and flexible, it is arguable that Arabic numerals are rendered concrete relative to many 

other symbols due to the information that they automatically communicate to 

experienced learners (e.g., Cohen Kadosh, Lammertyn, & Izard, 2008; Moyer & 

Landauer, 1967). Thus, repurposing the counting numbers 2 and 3 to represent 2/3, a 

quantity that cannot be reached by counting, may pose some special problems, 

precisely because of the concrete nature of our understandings of 2 and 3.  

Indeed, much prior research demonstrates that natural number symbols are 

learned so thoroughly that simply seeing them evokes thoughts about whole number 

magnitudes. For example, whole number values are encoded so automatically that even 

children demonstrate Stroop effects whereby they are faster and more accurate in 

judging that the 7 is physically larger than the 5 in the first part of this sentence than 

they are to indicate that the 5 is physically larger than the 7 at the end (Bull & Scerif, 

2001; Henik & Tzelgov, 1982; Washburn, 1994). Further, viewing large numbers 

automatically primes many adults to attend to the right side of space, and viewing small 

numbers primes attention to the left side of space (Fischer et al., 2004; Dehaene, 

Bossini, & Giraux, 1993). Moreover, neuroimaging studies show that even passive 

exposure to symbolic numbers – in contrast to nonnumerical words – activates brain 
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regions used to process discrete sets of objects (e.g., Cantlon et al., 2008; Eger, 

Sterzer, Russ, Giraud, & Kleinschmidt, 2003; Piazza, Pinel, Le Bihan, & Dehaene, 

2007). For decades now, we have known that the ways human beings discriminate 

between symbolically represented natural numbers parallels the ways that humans 

perceptually discriminate between magnitudes of different perceptual continua, such as 

two sounds of different volumes or lights of different intensities (Moyer & Landauer, 

1967). This is even true for kindergarten children in familiar number ranges (Sekuler & 

Mierkiewicz, 1977). These are but a few of the extensively replicated effects that 

suggest that number symbols are processed rapidly and independently of volition. They 

bear an informational load that is not easily shed, and this has consequences. 

 One consequence alluded to above is the inappropriate application of natural 

number schemas to rational number contexts. For instance, when dealing with rational 

numbers, learners commonly struggle with the whole number bias – a strategic bias to 

base judgments on a single component of a ratio or fraction rather than on the 

relationship between the components (DeWolf & Vosniadou, 2015; Mack, 1995; Ni & 

Zhou, 2005; Obersteiner, Van Dooren, Van Hoof, & Verschaffel, 2013; Pitkethly & 

Hunting, 1996). For instance, children routinely judge 1/8 to be larger than 1/6, because 

6 is larger than 8 (Mack, 1990). Thus, when a nationally representative sample of high 

school students was asked whether 12/13 + 7/8 was closest to 1, 2, 19, or 21, students 

were more likely to choose 19 and 21 than 2 (Carpenter, Corbitt, Kepner, Lindquist, & 

Reys, 1980). That is, many students demonstrate a whole number bias, adding the 

components of the fractions (i.e., numerators, denominators) in violation of the 

principles that govern fraction arithmetic.  
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Although this problem is well known in both mathematics education research and 

in psychology, the depth of the problem may be underappreciated. Research shows that 

even mathematicians and undergraduates at highly selective universities are not 

completely immune to this bias (e.g. DeWolf & Vosniadou, 2011; Obersteiner et al., 

2013; Vamvakoussi, Van Dooren, & Verschaffel, 2012). When undergraduate 

participants are asked to compare symbolic fractions, they tend to be highly accurate 

overall, but they are significantly slower and less accurate when component based 

comparisons do not agree with overall magnitude comparisons. These effects are 

particularly apparent in cases involving double symbolic incongruities – cases in which 

the larger ratio has both a smaller numerator and smaller denominator compared to the 

larger – such as 2/9 vs. 1/3. In my own work, I found that this double symbolic incongruity 

imposed a cost of 400-500ms extra processing time – a massive cost for tasks 

generally completed in less than 2000 ms. Even though participants were highly 

accurate overall (mean accuracy > 90%), they were six times more likely to answer 

incorrectly on these items compared to others (Matthews & Lewis, 2016; see also 

Ischebeck, Weilharter, & Körner, 2015). 

What shows up as relatively small costs in terms of reaction times for the highly 

educated adult seems to impose a much higher cost on children acquiring rational 

number knowledge. The prevalence and severity of the costs associated with 

introducing ratio and fraction with natural number has led some to hypothesize that 

engagement with whole number schemas directly inhibit the acquisition of rational 

number concepts (e.g., Hartnett & Gelman, 1998; Streefland, 1978; see Pitkethly & 

Hunting, 1996, for a review). On this view, difficulties with rational numbers stem directly 
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from the entrenchment of discretized natural number logic with which children routinely 

engage in their formal mathematics experiences (compare with McNeil & Alibali, 2005; 

McNeil et al., 2012). Because the 2 and 3 in 2/3 are processed involuntarily as natural 

numbers, it is difficult to get learners to attend to the new number that emerges from the 

relationship between them given the new notation. Learners cannot see the forest 

(rational numbers) because of their familiarity with the trees (natural number symbols). 

To the extent that ratios and fractions must be represented using concatenated and 

repurposed natural numbers, the difficulty would seem to be nearly inevitable.  

In this context little hope is to be gained from any of Kieren’s seven 

interpretations of rational number. Each relies on notations that employ repurposed 

natural number symbols and are therefore likely to evoke count based logics that are 

not easily reconciled with the relational logic of rational numbers. However, the eighth 

subconstruct I have offered – that of the nonsymbolic ratio – is not dependent upon 

number symbols. If such an interpretation of ratio could be made sensible, it might 

provide access to important aspects of the rational number mega-concept without falling 

subject to the pitfalls of symbolic representations.  

A Sense of Proportion 

 Above I alluded to Carraher’s (1996) instructive distinction between a ratio of 

quantities and a ratio of numbers. He summed up what is at stake when pedagogy 

relies solely on number symbols thusly: 

A narrow mathematical conception disregards the role physical quantity plays in 

the meaning of the concept and consequently obscures the psychological origins 

of fractions, for there is little doubt that number concepts, including rational 
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number concepts, are developed through acting and reflecting upon physical 

quantities. (p 241) 

He proposed that nonsymbolic ratio could go beyond the number line or measurement 

interpretation (#7), which fundamentally involves a project of mapping nonsymbolic 

ratios to symbolic numbers (see Chesney & Matthews, 2012). Carraher temporarily 

shed the connection to number entirely, suggesting that students could come to 

represent ratios between line segments in a de-arithmetized or non-numerical fashion, 

without the encumbrance of units (Figure 2; compare with Ellis’ paint roller example 

below). He argued that, 

By suppressing the number line altogether we can work in a non-metric space, 

with no unit of measure, in which the lengths of line segments are mutually 

defined according to their relative magnitude…this characteristic makes possible 

the creation of partially "de-arithmetized" tasks, for which there exist no mere 

numerical solutions and for which students must reflect upon ratios of quantities. 

(p285) 

 

 

Figure 2. Adapted from Carraher (2003). Panel (a) shows a typical use of nonsymbolic 

quantities that are paired with natural number labels. By contrast, panel (b) shows the 

line segments in the same ratio and invites consideration of the relation without reliance 

on numbers and counting. 

 

a) b) 
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This conception presaged recent work that cast number lines as proportions 

between nonsymbolic ratios and pairs of number symbols (e.g., Barth & Paladino, 2011; 

Matthews & Hubbard, 2016), focusing on the intuition provided by the nonsymbolic ratio 

representation. Despite the conviction with which he wrote, Carraher offered limited 

empirical evidence regarding these “psychological origins.” A proper defense would 

have required showing that human beings do have access to rational number concepts 

when presented in nonsymbolic form and that this access precedes formal instruction 

using formal number symbols. Fortunately, the empirical record has confirmed these 

claims.  

  A growing number of studies demonstrate that human beings do in fact have a 

perceptually-based sensitivity to nonsymbolic ratios (Abrahamson, 2012; Duffy, 

Huttenlocher, & Levine, 2005; Fabbri, Caviola, Tang, Zorzi, & Butterworth, 2012; Jacob 

& Nieder, 2009; Matthews et al., 2016; McCrink & Wynn, 2007; Sophian, 2000; Stevens 

& Galanter, 1957; Vallentin & Nieder, 2008; Yang, Hu, Wu, & Yang, 2015; see Jacob et 

al., 2012 or Lewis et al., 2015 for reviews). Moreover, this nonsymbolic ratio sensitivity 

is present early in development, including the years preceding formal instruction on 

rational number concepts. For example, even 6-month-old infants are sensitive to 

nonsymbolic ratios when presented as collections of yellow Pac-men and blue power 

pellets (McCrink & Wynn, 2007, Figure 3a), and preschool-aged children can match 

spatial ratios such as those shown in Figure 3b (Sophian, 2000). In fact, some research 

suggests that very young children may at times be more attuned to nonsymbolic ratio 

than to extensive magnitude; Duffy Huttenlocher and Levine (2005) presented 4-yr old 

children with wooden dowels encased in glass sheaths as shown in Figure 3c and 
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instructed them to pick which of two choices matched an original dowel on length. When 

presented with a choice that matched the target in terms of dowel length and a target 

mismatched on length but matched on dowel:case ratio, children picked the proportional 

match far more often than chance. Thus, not only do young children exhibit ratio 

sensitivity, but in some cases nonsymbolic ratio is even more salient than a raw match 

of extensive magnitude. Moreover, they exhibit this competence without reliance upon 

symbolic numbers. 

 

Figure 3. Nonsymbolic ratio stimuli used (a) with nonverbal infants by McCrink & Wynn, 

2007, (b) with 4- and 5-year-old children by Sophian (2000), and (c) with 4-year-olds by 

Duffy, Huttenlocher, and Levine (2005). 

Recent research with adults has begun to systematically detail the robust nature 

of nonsymbolic ratio sensitivity and how it relates to symbolic mathematical abilities 

(Hansen et al., 2015; Matthews et al., 2016; Möhring, Newcombe, Levine, & Frick, 

2015). One of the most important findings is that adults appear to process nonsymbolic 

ratios perceptually (i.e., without recourse to symbolic numbers). Given their familiarity 

and accuracy with symbolic fractions, one might expect for university students to 

convert nonsymbolic ratios into symbolic terms to complete comparison tasks. However, 

multiple experiments have now found that college students can accurately complete 

nonsymbolic ratio comparisons significantly faster than they complete symbolic ratios 

(Matthews & Chesney, 2015; Matthews, Lewis, & Hubbard, 2016). This indicates that 

a) b) c) 
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adults access nonsymbolic ratios without first converting them to symbolic form. Adult 

performance reveals a perceptual sensitivity – they can feel out ratio values when 

presented in some nonsymbolic forms (compare with Abrahamson, 2012).  

Additionally, research has found that nonsymbolic ratio processing is sometimes 

automatic (Fabbri et al., 2012; Jacob & Nieder, 2009; Yang et al., 2015). Matthews and 

Lewis (2016) demonstrated this automatic processing using an adapted size congruity 

paradigm. As alluded to above, humans are faster and more accurate when choosing 

the physically larger between 3  and 7  than they are when choosing the physically 

larger between 3 and 7 . This is because numerical magnitudes are read automatically 

and influence magnitude decisions on the physical dimension. Matthews and Lewis 

asked undergraduates to compare symbolic numerical ratios while manipulating the 

physical font ratios, defined as the ratio generated by dividing the numerator font area 

by the denominator font area. For instance in the left panel of Figure 4, the symbolic 

ratio 1/4 is written in a larger symbolic ratio than 5/8. For congruent trials, the larger 

symbolic ratio was presented in a larger font ratio with the smaller symbolic ratio in the 

smaller font ratio (left panel), and the pattern was reversed for incongruent trials (right 

panel). 

 

Figure 4. Nonsymbolic font ratio was defined as the ratio of the physical area occupied 

by the numerator to that occupied by the denominator in fractions used in a comparison 

Font	Ra(o	Magnitude	
Incongruent	 Congruent	
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task. When the fraction with the larger nonsymbolic font ratio was congruent with the 

numerical comparison task (i.e., on the same side as the numerically larger fraction), 

participants were faster and more accurate compared to when nonsymbolic ratio was 

incongruent (adapted from Matthews & Lewis, 2016). 

  

Participants were faster and more accurate on congruent trials when compared 

to incongruent trials. Notably, the experimenters never made reference to nonsymbolic 

ratio for the duration of the experiment. Nevertheless, nonsymbolic ratios were 

processed automatically, and this nonsymbolic processing influenced symbolic 

numerical activity. Specifically, larger nonsymbolic ratios were associated with larger 

symbolic ratio values, and smaller nonsymbolic ratios were associated with smaller 

symbolic ratios. The research briefly outlined here is but a small swath of the growing 

body that suggests that humans and other animals (e.g., Harper, 1982; McComb, 

Packer, & Pusey, 1994; Wilson, Britton, & Franks, 2002) have a basic sensitivity to 

nonsymbolic ratios and that this sensitivity exists independently of number symbols.  

Implications for Education/Training/Didactics 

It is perhaps natural to ask, if sensitivity to nonsymbolic ratios is so pervasive and 

even automatic, why do learners continue to have difficulties with rational number 

symbols? The answer is a simple: a basic sensitivity does not an elaborated concept 

make. It is one thing to be perceptually sensitive to nonsymbolic ratio and quite another 

to have verbally-mediated conceptual knowledge about ratio. It is another thing still to 

link such conceptual knowledge to repurposed number symbols. On this point, I 

converge with Ellis in the belief that cultivating formal ratio concepts requires effortful 
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action on the part of the learner. Furthermore, educators will continue to play a crucial 

role in spurring and supporting this effortful action. 

It currently remains the case that most curricula do not attempt to leverage this 

nonsymbolic capacity. Despite the work cited above to make the case humans can 

perceive nonsymbolic ratios, very little empirical work in psychology has directly sought 

to leverage this ability (but see Abrahamson, 2012). On this issue, my work turns from 

the empirical to the speculative, leaving more open questions than answers. How might 

we use nonsymbolic ratios as didactic objects (Thompson, 2002) that support 

mathematical discourse? How might we design perceptual learning modules 

(Goldstone, Landy & Son, 2010; Kellman, Massey & Son, 2010) that use rapid 

presentation of multiple exemplars to leverage powerful perceptual learning abilities to 

cultivate conceptual knowledge? Are some nonsymbolic forms more accessible than 

others? How can we optimally integrate multiple visual forms including nonsymbolic 

ratios to best illustrate the rational number mega-concept?  

Finally, how might we best use the nonsymbolic ratio subconstruct to make 

symbolic ratios, fractions, and percents more meaningful to learners? Here it is 

especially important to recognize two conspicuous limitations that nonsymbolic ratios 

have relative to symbolic numbers: First, despite their intuitive leverage, nonsymbolic 

ratios still only provide only partial coverage of the rational number mega-concept. If 

adopted as an eighth construct to Kieren’s (1976) list, the other seven are still symbolic 

in nature. Second, it is clearly the case that learners must learn to engage with 

symbolically represented rational numbers to be mathematically literate. After all, 

symbolic representations of rational numbers wield undeniable power and will continue 
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to be the chief currency of advanced mathematics and science. In the final analysis, the 

chief question is how to make those symbolic representations meaningful instead of 

seldom understood and often feared. Fortunately, Ellis’ section below offers some 

promising answers to a few of these open questions. Others remain open, and it is our 

hope that this discussion will help spur future research that will result in more answers. 

Ratio as a Mental Operation (Ellis) 

 I (Ellis) define ratio to be a multiplicative comparison of two quantities. Following 

Thompson and Thompson (1992; Thompson, 1994), I consider ratio to be constituted in 

a learner’s mental operations grounded in images of multiplicative comparisons and 

dynamic change. A ratio is not constituted in a situation, in a mathematics problem, or in 

our environment. Instead, it is formed in one’s mental operations when comparing two 

quantities multiplicatively: “Whether a quantity is a rate or a ratio depends on who is 

conceiving the situation and upon how he or she happens to be thinking of it” 

(Thompson, 1993, as cited in, Behr et al., 1994). One may compare how many times as 

big one quantity is compared to another, or one may unite two quantities into a 

composed unit (Lamon, 1994) that can be iterated and partitioned while maintaining the 

invariant relationship between the linked quantities. Many refer to the latter operation as 

proto-ratio reasoning (Lesh et al., 1988), but in either case, one must simultaneously 

attend to two quantities. Further, I propose that one way to leverage students’ 

perceptual, non-symbolic ratio sense is to ground ratio reasoning in images of dynamic 

change, in which students can consider two quantities whose magnitudes vary together 

with the anticipation that the invariant relationship does not change (Thompson & 

Thompson, 1992). 
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 By quantities, I mean mental constructions composed of a person’s conception of 

an object, such as a piece of string, an attribute of the object, such as its length, an 

appropriate unit or dimension, such as inches, and a process for assigning a numerical 

value to the attribute (Thompson, 1994; 2011). Like ratios, quantities are not constituted 

in our environment, but instead are conceptual entities. Many quantities are ones that 

can be measured directly, such as length. Others, however, must be formed as a 

comparison. As Matthews noted above when describing ratio as a quantity emerging 

from a comparative relationship, students can develop a new quantity in relation to one 

or more already-conceived quantities. This formation does not necessarily have to be 

multiplicative; for instance, one could compare two quantities additively by considering 

how much taller one person is than another. However, there is a class of quantities 

called intensive quantities that can be conceived as a multiplicative relation, such as 

speed or steepness (Nunes, Delsi, & Bell, 2003; Piaget & Inhelder, 1975). It is these 

intensive quantities that are relevant to the formation of the ratio concept.  

 Thompson (1994) distinguished between the notion of ratio, in which a 

multiplicative relationship is constructed between two static (non-varying) quantities, 

and internalized-ratio, in which the result of a multiplicative comparison remains 

invariant, but the values of the related quantities vary. This latter notion has some 

similarities to Kieren’s (1976) subconstruct #3, but with special attention to the variation 

of quantities. Harel et al. (1994) exemplified this distinction in relation to constancy of 

taste. One can conceive of a ratio such as 3 cups of orange concentrate per 4 cups of 

water as a comparison of two specific collections, and one can even think about the 

water as 4/3 as much liquid as the orange concentrate (or the orange concentrate as ¾ 



Running Head: NATURAL ALTERNATIVES  
 

27 

as much liquid as the water). As an internalized-ratio, however, one conceives of the 

same statement as a representation of all possible ratios between two collections of 

orange juice and water, where the specific values of the collections vary multiplicatively. 

Further, each of those ratios will represent the same phenomenon, that of how orangey 

the mixture will taste. In the following paragraphs I propose a set of instructional 

principles for developing ratio and internalized-ratio that draw not on natural number, 

but rather on students’ abilities to perceive, isolate, and compare continuous quantities. 

 In order to form an intensive quantity and conceive of an internalized-ratio, one 

must form a multiplicative object (Moore, Paoletti, & Musgrave, 2013; Saldanha & 

Thompson, 1998; Thompson, 2011), a conceptual uniting of two quantities so that they 

are held in the mind simultaneously. The formation of such an object means that one 

can choose to track either quantity’s value “with the immediate, explicit, and persistent 

realization that, at every moment, the other quantity also has a value” (Saldanha & 

Thompson, 1998, p. 299), because they are coupled. A person forms a multiplicative 

object from two quantities as a result of mentally uniting their attributes to make a new 

conceptual object (Thompson & Carlson, 2017). However, the formation of a 

multiplicative object is not trivial. Research on children’s understanding of ratio 

thoroughly documents the use of additive rather than multiplicative strategies (e.g., Hart, 

1981, 1988; Inhelder & Piaget, 1958; Karplus et al., 1983), as well as the phenomenon 

of reasoning with only one quantity at a time rather than simultaneously attending to 

both (e.g., Noelting, 1980). These challenges pose obstacles for developing 

internalized-ratio, a key conceptual advance for understanding proportion, rate, and 

function. 
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Building Ratio from Measurement of Magnitudes 

Are there ways to better support children’s attention to quantities in ratio 

development? Above, Matthews thoroughly documented the conceptual drawbacks 

associated with building ratio from natural number symbols, but is there an alternate 

instructional route? Indeed there is precedent for developing early mathematical ideas 

by building on children’s natural predilection for noticing and comparing quantities they 

encounter in their lives. In particular, consider the Elkonyn-Davydov curricular approach, 

a first through third grade Russian curriculum derived from the work of Vygotsky and 

Leontiev (Davydov, Gorbov, Mukulina, Savelyeva & Tabachnikova, 1999). Researchers 

in the United States have subsequently developed a U.S. version of the Elkonyn-

Davydov curriculum called Measure Up, and have studied its effects on children’s 

algebraic reasoning (Dougherty et al., 2008). These approaches rely on the notion that 

situating early mathematics in the comparison of non-symbolic magnitudes creates 

favorable conditions for the future formation of the abstraction of arithmetic and 

algebraic relationships (Davydov & Tsvetkovich, 1991). The Russian group and their 

U.S. counterparts begin with non-symbolic continuous attributes, such as length, height, 

and volume, to model real number properties and operations. This approach is 

consistent with the notion that numbers are rooted epigenetically in reasoning about 

quantities and their relationships (Thompson & Carlson, 2017). As Devlin (2012) 

argued, working with non-symbolic attributes can lead to abstraction; one must think 

about the quantity itself, and its relation to other quantities, without putting a number to 

it. In this manner the curriculum does not develop algebraic structure as a 
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generalization of number or the activity of counting discrete objects. Instead, it develops 

algebraic structure from relationships between quantities (Schmittau & Morris, 2004).  

The quantities children attend to in the Elkonyn-Davydov and Measure Up 

curricula are not built from counting; instead, children begin by comparing properties of 

objects and representing such comparisons without measuring them. Children come to 

school already attending to quantities and magnitudes in their everyday activity. They 

make comparisons about who has more or less, who is taller than whom, and they 

perceive amounts of extensive and intensive quantities. In the first grade, children are 

asked to identify which quantities are less than, greater than, or equal to other quantities 

and then to express these comparisons without assigning numbers to the attributes 

under comparison. Schmittau (2004) argued that when children do not have access to 

numerical examples, they must rely on a theoretical understanding of the relationships 

in question. Thus children’s nascent understandings of algebraic relationships are 

grounded in their attention to quantities in their surrounding environments, actions on 

those quantities, and models of relationships between those quantities. 

With fractions and ratios, researchers using variants of the Elkonyn-Davydov 

curriculum have worked with children to develop ratio reasoning from a basis of 

measuring continuous quantities rather than counting and partitioning (Morris, 2000; 

Simon & Placa, 2012). Students are tasked with objectives such as selecting a length of 

string that is the same length as a model on the other side of the room, but the model 

cannot be moved. Thus they learn that one can compare two quantities indirectly 

through the use of a third quantity that can be compared to both of the original 

quantities. Students develop the concept of measure, a unit of measure, and a unit, 
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making distinctions among the quantity being measured (such as length), the measure 

(such as a piece of string), and the number used to designate the relationship between 

the two. Thus the concept of unit is developed from the use of a chosen measure, and 

ad hoc units are present early on. This approach offers a contrast to the typical 

treatment of measurement, in which children begin first with counting activities, working 

with collections of discrete objects in which each whole object takes on the unit of one. 

Studies examining students’ development of algebraic reasoning suggest that this 

approach, in contrast to a natural-number based approach, may create a more flexible 

foundation for abstracting algebraic relationships (e.g., Dougherty & Venenciano, 2007; 

Dougherty et al., 2008). 

Within the Elkonyn-Davydov curriculum and its counterparts, the conceptual 

origin of ratio is a relationship between two magnitudes. This is similar to Matthews’ 

description of ratio as a quantity that emerges from a comparative relationship, with one 

important difference: Here, after engaging in activities of noticing and comparing, 

children eventually quantify magnitudes with numbers. Critically, this quantification is 

built on a foundation that draws on children’s proclivities to notice and assess 

magnitudes. In contrast, typical approaches introduce fraction and ratio through 

partitioning, relying on a model of division that is inherently discrete. When working with 

a continuous attribute, such as length, children can choose a measure that is any size 

relative to the attribute being measured. The attribute being measured may not be an 

exact multiple of the measure, which affords attention to the relationship between the 

change of numbers and the change of measures. Further, it moves children out of the 

world of natural numbers and, at least mathematically, situates ratio within the reals in 
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the sense that neither the value of the measure nor the measured must necessarily be 

rational. 

The above approach to ratio builds on children’s abilities to notice and perceive 

non-symbolic extensive quantities such as length or volume. One could also extend this 

approach to connect to children’s perception of non-symbolic ratios, or intensive 

quantities. For instance, as Matthews discussed, it may be fruitful to build instruction on 

having children assess differences in ratio magnitude based on a perceptual 

comparison of quantities (e.g., Abrahamson, 2012; McCrink & Wynn, 2007; Sophian, 

2000). One could then develop a series of activities in which children have to determine 

whether their perceptual assessments are valid. I suggest it would be most effective to 

do this not with same-quantity comparisons in ratio perception (such as ratios 

composed of pairs of line segments shown in Figures 1b and 2), but with ratios 

representing different-quantity comparisons. For instance, consider the cases of speed, 

composed of time and distance, or of steepness, composed of height and length. Given 

two subjects walking at constant speeds, children can easily determine who is walking 

faster (Ellis, 2007; Lobato & Siebert, 2002). Likewise, given two ramps, children can 

easily determine which is steeper (Lobato & Thanheiser, 2002). The question is one of 

how to support students’ activities of appropriately mathematizing those perceptual 

experiences. How can you measure which person is faster? What quantities make up 

the determination of speed, and how do you compare those quantities? A great deal of 

work in mathematics education has occurred precisely in this area, studying ways to 

situate ratio development in the mathematization of comparing intensive quantities (e.g., 

Harel, Behr, Lesh, & Post, 1994; Kaput & West, 1994; Lobato & Seibert, 2002; Lobato & 
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Thanheiser, year; Simon & Blume, 1994; Thompson & Thompson, 1992; Thompson, 

1994). However, this approach stands counter to the curricular dominance of natural 

number-based tasks. More work is needed to better understand how to leverage both 

students’ perceptual experiences and quantitative reasoning abilities and how to 

support teachers in implementing such tasks. I propose that a particularly fruitful 

direction is in the development of internalized-ratio rooted in the comparison of varying 

quantities.  

Building Internalized-ratio from Covariation 

Thompson and Carlson (2017) suggest that the operation of dis-embedding an 

image of one quantity varying (such as distance accumulating) from an image of 

another quantity varying (such as time accumulating) not only marks the beginning of 

covariation, but is also at the root of the construction of intensive quantities. By 

covariation, I refer to the mental activity of holding in mind individual quantities’ 

magnitudes varying, and then conceptualizing two or more quantities as varying 

simultaneously (Thompson & Carlson, 2017; Thompson & Saldanha, 1998). As 

researchers or instructors we can develop situations for students that introduce what we 

conceive of to be constant rates, such as distance and time accumulating together, but 

it remains an open question whether our students will conceive of those situations 

covariationally. How to support students’ conceptions of those situations through the 

mental activity of covariation in order to build up internalized-ratio – and, more 

generally, function – is a persistent question that guides my research program. 

 Covariation is critical for developing an understanding of internalized-ratio, 

proportionality, and more broadly the concept of function as a foundation for algebra 
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and calculus. Thompson and Carlson (2017) argue that variational and covariational 

reasoning are, at their core, fundamental to students’ mathematical development. 

Students can and do reason statically about quantities, conceiving of them as 

unchanging. But it is also possible for students to develop a conception of a situation 

that relies on a quantitative structure that supports an image of multiple quantities’ 

values varying in relation to that structure. Saldanha and Thompson (1998) suggest that 

such images of covariation are, at least in part, developmental. Children may initially 

coordinate the values of two quantities by thinking of one in isolation, and then the 

other, and then the first again, and so forth. Subsequently, images of covariation appear 

to rely on an image of one quantity varying that contains an implicit image of another 

quantity embedded within it (e.g., Ellis, Özgür, Kulow, Williams, & Amidon, 2015; 

Keene, 2007; Lobato et al., 2012). Students must then undergo a conceptual shift in 

which they dis-embed the image of the implicit quantity from the other quantity, 

becoming able to explicitly attend to the variation of both.  

 How can we foster the development of these quantitative images to support the 

construction of internalized-ratio? A key component of such an endeavor is situating 

students’ mathematical activity, initially, in contexts that are not reliant on a basis of 

counting, number, or even measurement. Removing students’ abilities to count and 

therefore discretize continuous, changing, or unspecified quantities could potentially 

encourage the construction of multiplicative objects. In fact, I propose that it may be 

helpful to introduce a variety of tasks that encourage covariational reasoning in order to 

foster such a Way of Thinking (Harel, 2008) as a broad conceptual foundation before 

then introducing students to particular quantitative relationships, such as those 
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represented by constant ratios. Here I will discuss two specific tasks that my project 

team and I have used in a small-scale teaching experiment (Ellis, 2016). Neither task is 

specific to building ratio, but both were engineered to foster covariational reasoning, 

which then served as a conceptual foundation for approaching later ratio tasks. 

The first task is the triangle/square task (Figure 5).iii Figure 5 contains four 

images that are screen captures of a movie shown to students. In the movie, the point P 

travels along the perimeter of a square and sweeps out a green triangle as it travels. It 

begins at the leftmost corner of the square, A. It travels along the bottom of the square 

from A to B, sweeping out the triangle as it travels (Figures 5a and 5b). The point P 

continues traveling from B to C, and from C to D in turn, continuing to sweep out the 

triangle (Figures 1c &1d). The point P then continues down the left side of the square, 

from D back to A. During this last portion of P’s journey, there is no triangle. 

Figure 5. Four screen captures of a movie of a point sweeping out a triangle. 

In a teaching experiment (Cobb & Steffe, 1983; Steffe & Thompson, 2000) with 

two 7th-grade participants, Olivia and Wesleyiv, I provided the students with the 

triangle/square movie and asked them to think about how the area of the triangle 

changes compared to the distance P accumulates as it travels around the perimeter of 

the square. It is possible for one to invent measures for the dimensions of the square 

and actually calculate areas and distances, which would eliminate the need to 
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simultaneously attend to the two varying quantities. However, given my knowledge of 

Olivia and Wesley’s mathematical backgrounds and our prior experiences, I was 

confident that they would not do so. Indeed, both students attended to the changing 

area and the distance traveled without making any measurements. Olivia and Wesley 

produced similar graphs comparing area with distance traveled (see Figure 6 for Olivia’s 

graph). Olivia explained her thinking as follows:  

So on the first increase, I thought that this, it gets from smaller to bigger [pointing 

from A to B], and then here was sort of this [pointing along segment BC] because 

I thought that it would stay about the same area. That’s just kind of how I saw it. 

And then it gets smaller [pointing from C to D]. And then it stays the same at 

[points along segment DA], I see nothing. 

 

        

Figure 6. Olivia’s graph comparing the triangle’s area to distance traveled 

Explaining why she made the angled portions of her graph straight rather than curved, 

Olivia said: 
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I think because like here [points to A], it has no area, and here [drags finger 

towards B] it has a little bit more. Like if you went up by increments here, maybe 

it would be, like, doubled, and so it kind of goes up. Like kind of what we were 

talking about before. Here it would be a whole bunch of little lines because it just 

kind of keeps going, but if it stopped, I imagine it going steadily up, like slowly 

getting to half. 

 Olivia’s construction of the graph relied on a non-numerical image of 

comparisons as she thought about the triangle’s area value changing; she could think 

about the triangle’s area increasing as P traveled, she could think about it decreasing, 

and she could think about it remaining the same. Olivia later provided a geometric 

argument for why the triangle’s area must remain the same as P traveled from B to C, 

but she could not explain why she thought the rate of change of the triangle’s area from 

A to B and from C to D would be constant. Her assumption that the triangle’s area 

changed at a constant rate relative to the distance P traveled, which happens to be 

correct, was likely based on perception. In addition, because the value of P’s “distance 

traveled” increased monotonically, the triangle/square task was an easier covariation 

task than many tasks of a similar nature. Simultaneously attending to the triangle’s area 

compared to the changing distance between P and A (around the perimeter of the 

square, not as the crow flies) was a more conceptually complex task, as evidenced by 

Olivia’s initial and corrected graphs (Figure 7). Here, Olivia initially constructed the 

triangle, but on further reflection realized that the graph would actually be a 

parallelogram, which included the final leg of the journey from point D to point A on the 

x-axis.  
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Figure 7. Olivia’s graph comparing the triangle’s area to the distance between P and A 

 The triangle/square task encouraged the students to attend to two quantities that 

changed together. It is one of a class of tasks that can potentially foster covariation by 

asking students to think about the changing values of two quantities simultaneously, 

particularly when it is difficult or impossible to measure (and therefore discretize and 

calculate with) the quantities’ magnitudes. The second task is the Gainesville Task, 

which we have borrowed from Moore’s (2016) study in which he addressed the 

distinction of graphs representing figurative versus operative thought (Figure 8). With 

this task, students must simultaneously attend to the car’s distance from Gainesville and 

distance from Athens as it travels from Athens to Tampa and back. The Gainesville task 

can be particularly effective in encouraging covariation because neither quantity is 

monotonically increasing; thus, one cannot easily keep one of the quantities implicit in 

imagination. Further, neither quantity is perceivable in the sense that students cannot 

see the relevant magnitudes, which removes measuring as an option. They must 

instead mentally construct images of the quantities changing (contrast this with 

Carraher’s (1996) line segment task, shown in Figure 2).  
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Figure 8. Moore’s (2016) Gainesville task. 

Wesley’s graph (Figure 9) showed that he initially approached the graph in a traditional 

manner, thinking of both quantities beginning from zero, but he quickly realized his 

error: 

So I started by going like this (points to the line departing from the origin), but I 

had to get closer to Gainesville so I’d have to be going backwards so I decided to 

start here (points to the non-origin point on the x-axis). So then I’m getting closer 

to Gainesville and farther away from Athens. So it goes higher. And then here on 

this part (pointing to the vertical line segment), you stay the same amount away 

from Gainesville but you keep getting farther away from Athens. And then on this 

part (pointing to the angled line segment at the top of the graph) you get farther 

away from both. 
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Figure 9. Wesley’s graph comparing the distance from Athens to the distance from 

Gainesville 

Building on a foundation of covariational reasoning, one can then shift to tasks 

that foster building internalized-ratio as an invariant multiplicative comparison in which 

the related quantities co-vary. For instance, in the same teaching experiment (Ellis, 

2016), I introduced tasks in which students compared the changing area of a rectangle 

compared to its distance swept as its length increased. Here, students familiarized 

themselves with the context of sweeping out a rectangle of paint with a paint roller of 

unspecified height (Figure 10), and then watched videos of paint rollers sweeping out 

rectangles. Finally, the students were asked to think about how the area of the rectangle 

would change compared to the length swept. 
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Figure 10. Paint roller task. 

By this point, the students were accustomed to attending to how two quantities 

varied together, and both students graphed the area of the rectangle compared to the 

length swept as a straight line. Olivia explained, “I sort of pictured it in my head…for 

every length that you’ve pulled, it should be the same amount of area.” Olivia could 

imagine the change in area for an unspecified length (the “length that you’ve pulled”), 

but unitized the length pulled to imagine how much area would be added for each 

same-increment amount of length. Wesley, in contrast, invented specific values: “I 

decided I would think the height would be 1 meter…so like if you drag it out 1 meter, so 

that the length is 1 meter and the height is 1 meter, and then to find the area you times 

the length by the height which is one times one, is 1 square meter actually.” Before 

introducing specific lengths (which the students called heights) for the paint rollers, I 

asked them to think about the rate of change of the area of a rectangle made by a taller 

paint roller versus a shorter paint roller. Both students graphed steeper lines for the 

taller paint roller (see Figure 11 for Olivia’s graph).  

 



Running Head: NATURAL ALTERNATIVES  
 

41 

 

Figure 11. Olivia’s graph for the area painted versus the length swept for a shorter and 

taller paint roller. 

Wesley compared the second unspecified height to his original 1-meter paint roller, and 

explained, “Because since it’s, the height is bigger than 1 meter now, then for every 

length that you pull it out one meter, it gets more area.” Similar to Olivia’s unspecified 

length increments, Wesley thought about 1-meter increments and then could compare 

the amount of area being added for each rectangle while holding the length increment 

steady. Olivia compared the area swept (which she referred to as the height of the wall) 

to the slope, stating, “The steeper it is, the larger height of the wall it is.”  

The ratio of area to length swept is a multiplicative invariant that depends on the 

height of the paint roller. Thanks to multiple experiences with covariation tasks before 
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encountering the paint roller task, Wesley and Olivia could not only observe the 

quantities area and length varying together, but could also explicitly think about both 

quantities changing. It was only then that they were introduced to tasks with specific 

numbers. When considering paint rollers of specific heights, such as 10 inches or 16.25 

inches, the students could construct ratios as representations of various snapshots in 

the paint-rolling journey. For instance, consider a paint roller that has swept a length of 

20 inches to produce an area of 160 square inches. One could imagine the ratio of 160 

square inches : 20 inches as having swept out 8 inches in area for each inch in length 

swept, but one could also conceive of the 160 : 20 ratio as one of an equivalence class 

of ratios, each representing a different point in the paint-rolling journey for an 8-inch 

paint roller. Further, the height of the paint roller does not have to be a natural number, 

nor does the amount of inches swept. When one’s reasoning is grounded in images of 

continuously changing quantities rather than discrete collections of sets, non-natural 

numbers do not pose a problem. Students also have a conceptual foundation for 

making sense of how changing the magnitude of one quantity or the other can change 

the value of the ratio.  

Another example in which students can reason about how changing initial 

quantities affects the value of a ratio is from a different covariation context, this time with 

two spinning gears (Ellis, 2007a). In this teaching experiment students developed ratios 

by comparing the simultaneous rotations of two connected gears, a large gear and a 

small gear. Any pair of rotations represented a ratio that the students could consider as 

one snapshot of a dynamic situation in which the two gears continuously rotated 

together. If the sizes of the two gears remained the same, then any given rotation pair 
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must represent the same ratio. Further, students could think about how the gear ratio 

would change if one gear became twice as small, or twice as large. Here as in the 

rectangle context, non-natural numbers did not pose difficulties for the students.  

In the gear scenario, the students constructed a ratio as an emergent quantity 

(Ellis, 2007b). The emergent quantity was gear ratio, or the relative size of one gear to 

the other as measured in a multiplicative comparison of teeth. Harel and colleagues 

(1994) identified a key conception in developing internalized-ratio to be an 

understanding of the (multiplicative) constancy of the relationship. Similarly, Simon and 

Blume (1994) introduced the term ratio-as-measure, to describe the notion of a ratio as 

an appropriate measure of a given attribute. One who conceives a ratio as an emergent 

quantity, that is, an attribute with a meaningful quantitative structure in its own right, can 

anticipate individual values of the initial quantities changing while the emergent quantity 

remains invariant. This way of reasoning can potentially be difficult if one has built up a 

conception of ratio as a static comparison of discrete sets. In contrast, there is some 

evidence that students develop more flexible ratio reasoning when they can conceive of 

an emergent quantity with contextual meaning, such as the height of a paint roller, gear 

ratio, speed, constancy of taste, or steepness (Ellis, 2007b). Further, constructing 

emergent-quantity ratios that represent conceptions of covariation better situates 

students to make sense of function, particularly in terms of understanding constant rates 

of change in algebra, varying rates of change in advanced algebra courses and beyond, 

and instantaneous rates of change in calculus. 

Matthews asked how one might use nonsymbolic ratios as didactic objects to 

support mathematical discourse in the learning of symbolic ratio. One potentially fruitful 
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avenue is to leverage students’ perception and mathematization of co-varying 

quantities. In the above examples, symbolic number was introduced late, after students 

had constructed an invariant relationship between two quantities as they varied. 

Significant time and attention was devoted to supporting students’ construction of 

multiplicative objects, and students had opportunities to learn how to make sense of two 

quantities varying together before they measured anything. Numbers then became 

expressions of magnitudes for the students, and thus were imbued with quantitative 

meaning as representations of their intended referents. In contrast, beginning ratio 

instruction with natural numbers situates ratio in the discrete world, as a static 

comparison of sets. It is difficult to then bootstrap up to an equivalence class conception 

of ratio in which each component value can take on any real number. Situating ratio 

instruction instead in contexts of variation and change can leverage students’ 

experiences with quantity and variation in order to foster a more robust understanding. 

Discussion 

Building early mathematics concepts exclusively on natural number and count-

based logic comes at a cost. We have presented arguments that converge on this 

conclusion, despite substantial differences in our preferred methods, contrasts in the 

types of warrants we choose for our claims, and disagreements in our general 

epistemologies. Specifically, we have each argued that natural number concepts do not 

neatly align with the structure of many foundational mathematical concepts, using ratio 

as a case for illustration. This misalignment can impoverish mathematical thinking, 

standing as an obstacle to conceptual development. Consistent with this critique, we 

have also sought to highlight the importance of embracing alternative methods of 
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introducing early mathematics concepts. Despite the present curricular primacy of 

natural number, other methods of representation often exist for building early 

mathematics concepts. In particular, we have focused on nonsymbolic representations, 

arguing that they a) may better leverage children’s intuitions built from everyday 

experiences and b) may better align with the structure of some to-be-learned concepts.  

At this point, however, we have yet to give an extensive treatment to the 

sometimes dramatic differences in our theoretical perspectives and how a theoretical 

synthesis or interdisciplinary research project might be possible. In what follows, we first 

attend explicitly to our points of divergence and the implications of this divergence for 

our research questions and preferred methods. Next, we offer a detailed exposition of 

the potential for synthesis in the face of this divergence. Finally, we conclude with a 

general consideration of several ways in which collaborations among researchers with 

divergent theoretical commitments can help enrich inquiry. 

Points of Divergence 

1. Epistemological divergence and implications for defining ratio.  

In the test domain of ratio, we have pressed our arguments from significantly 

different epistemological stances. In fact, our perspectives differ in fundamental ways 

that we have not fully reconciled. These differences have implications for the definition 

of ratio itself: In particular, are ratios ‘constructed’, or are they ‘things in the world’?  

Matthews’ argument is built on the notion that humans come equipped with a 

ratio processing system – a primitive perceptual apparatus that is sensitive to ratio 

magnitudes. For Matthews, a full accounting of mathematical knowledge involves both 

metacognitive and associative mechanisms (e.g., Crowley, Siegler, & Shrager, 1997). 
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That is, mathematical thinking clearly involves explicitly recognized conceptual 

knowledge, procedural knowledge, and procedural flexibility (Schneider, Rittle-Johnson, 

& Star, 2011). However, beyond this, it also involves associative mechanisms that 

operate below the level of consciousness. Accordingly, mathematical cognition is 

implicated in ineffable production rules (Anderson, 2014), and probabilistically activated 

representations and strategies (e.g., Siegler, 1996). Moreover, it is integrally tied to 

perceptual learning mechanisms that are at one and the same time both simple and 

capable of extracting deep conceptual structures from a vast array of information 

(Goldstone & Barsalou, 1998; Kellman et al., 2010). In sum, this conception of the 

human learner conceives of the learner as a computer – but not as a computer built 

from silicon and wires. Instead, this computer is built from billions of neurons and 

trillions of synapses whereby memories, knowledge, and even emotions are conceived 

of as patterns of neural activation. For some, this account may seem de-humanizing, 

reducing human cognition to input-output patterns. For others – including Matthews – it 

represents a productive world of nearly infinite possibilities, one that can support 

theorizing about the constraints and potential of human cognition while allowing for 

incredible flexibility along the way. 

From this perspective, human brains did not evolve to do mathematics. Instead, 

cultural inventions such as mathematics and reading co-opt pre-existing brain systems 

to support new competencies (see Dehaene & Cohen, 2007). Thus, it is important to 

see ratio as a salient feature given in the world, something to be observed, like color or 

brightness (Jacob et al., 2012). Matthews considers ratio as a phenomenon that exists 

independently of humans and can be passively observed by primitive cognitive 
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endowments that we share with other animals like chimpanzees (Wilson, Britton, & 

Franks, 2002), lions (McComb, Packer, & Pusey, 1994), and even ducks (Harper, 

1982). It is a feature for which our perceptual apparatus has evolved sensitivity over 

millions of years, and it seems only natural that we should try to leverage this capacity. 

On this view, ratio is also a fuzzy concept that so seamlessly blends into other rational 

number concepts, such as fraction or percentage, that they are effectively proxies for 

one another. 

For Ellis, mathematical knowledge develops as part of a process in which 

children gradually construct and then experience a reality as external to themselves 

(Piaget, 1971). This theory of knowing breaks with convention in that knowledge does 

not necessarily reflect an objective ontological reality, but instead is considered an 

ordering and organization of a world constituted by one’s experience (von Glasersfeld, 

1984). This stance does not reject the existence of an objective reality and should not 

be confused with solipsism (for a detailed account of this argument, see von 

Glasersfeld, 1974). Rather, it posits that there is no way to obtain confirmation that our 

knowledge is an accurate reflection of reality. In order to claim any sense of invariance 

between what we perceive and what exists external to us, a comparison would have to 

be made, and we do not have access to such a comparison. Consequently, the idea of 

a match with reality is replaced with that of fitness. Our knowledge is viable if it stands 

up to experience, enables us to make predictions, and allows us to bring about certain 

phenomena (von Glasersfeld, 1984). It is an instrument of adaptation that enables us to 

avoid perturbations and contradictions, but adaptive fit is not interpreted as a 

homomorphism.  
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Where the realist believes mental constructs to be a replica of independently 

existing structures, Ellis takes these structures to be constituted by people’s activity of 

coordination (von Glasersfeld, 1995). A knower’s conceptual and perceptual activity is 

constitutive; in other words, our representations of our perceived environments are 

always the results of our own cognitive activity. Percepts – even color and brightness – 

are no exception to this. On this view, ratio is not something that exists external to 

humans that they passively perceive. It is a mental operation coordinated from prior 

actions and operations (Piaget, 2001), which necessarily entails effortful activity 

supported by meaningful instruction. This conception of ratio is clearly defined and 

distinct from the concept of fraction. 

2. Implications for research.  

These differences in perspective naturally shape the research questions we each 

pose and the methods we use to investigate them. Matthews begins by asking, how do 

human brains – these computers composed of neurons – come to fluently understand 

concepts that they clearly did not evolve to support? From this perspective, it is natural 

to focus on primitive sensitivity to nonsymbolic perceptual ratios that extends across 

species and to ask how this sensitivity can be exapted for human use. Exaptation, a 

phrase coined by Stephen J Gould, refers to traits or features that were not built by 

natural selection for their current use, but have affordances that organisms leverage for 

new functions (Gould & Vrba, 1982). Matthews begins by asking about abilities and 

constraints of the cognitive system – conceived of as a thing in the world that evolved to 

perceive things in the world – and thinks of education as a process that exapts these 

basic abilities to support competence with cultural inventions such as mathematics and 
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reading (see also Dehaene & Cohen, 2007; Feigenson, Dehaene & Spelke, 2004; 

Gelman & Meck, 1983). 

On this view, the first step in theorizing about potential for learning is sometimes 

to identify and detail these basic primitive abilities (e.g., sensitivity to nonsymbolic 

perceptual ratios). Methods for exploring these abilities include using various tasks to 

measure the acuity with which people at various points in development can discriminate 

among nonsymbolic ratios that serve as analogs to specific numerical ratios. These 

tasks may involve timed magnitude comparisons (e.g., Matthews & Chesney, 2015), 

choosing which of two alternative choices matches a target (e.g., Boyer & Levine, 2011; 

Vallentin & Nieder, 2010), or having participants make estimates using either symbolic 

numbers or by producing equivalent nonsymbolic ratios in alternative formats (e.g., 

Meert, Gregoire, Seron & Noel, 2012). Moreover, these tasks can be adapted to 

measure the extent to which sensitivity to nonsymbolic ratios automatically affects other 

magnitude comparisons (e.g., Matthews & Lewis, 2016; Fabbri, Caviola, Tang, Zorzi & 

Butterworth, 2012). Finally, correlational studies (e.g., Fazio, Bailey, Thompson & 

Siegler, 2015; Jordan, Resnick, Rodrigues, Hansen, & Dyson, 2016; Matthews, Lewis & 

Hubbard, 2016) can help reveal whether and how perceptually-based nonsymbolic ratio 

abilities are related to competence with symbolic ratios and other rational numbers. 

Each of these methods relies on a large number of data points to support statistical 

inference about the extent to which samples of people at different ages demonstrate 

sensitivity to nonsymbolic perceptual ratios in the world.  

In contrast, rather than taking ratio as given and studying how well students 

perceive, leverage, or manipulate ratios and their associated concepts (or how they can 
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be trained to improve in these tasks), Ellis investigates a different set of questions: What 

do students construct as ratio? What is the structure of the epistemic student’s (Steffe & 

Norton, 2014) mathematical world? In building models of student thinking, what are the 

possible operations and images entailed in developing a productive ratio concept? How 

can instruction foster that conceptual development? 

The methods appropriate for addressing the above questions include the design 

and analysis of a) written assessments (e.g., Cooper et al., 2011; Knuth et. al, 2012; 

Lockwood, Ellis, & Knuth, 2013), b) structured or semi-structured clinical interviews 

(e.g., Ellis & Grinstead, 2008; Lockwood, Ellis, & Lynch, 2016), and c) teaching 

experiments (e.g., Ellis et. al, 2016; Ellis et. al, 2015; Ellis, 2011). Written assessments 

can provide data on students’ current ways of operating, and can also be fruitful for 

identifying common strategies and errors. An advantage of assessment data is that, 

unlike clinical interviews or teaching experiments, written assessments afford the 

analysis of large data sets, lending statistical validity to findings. In order to address the 

finer-grained questions about students’ conceptual operations, Ellis relies on clinical 

interviews and teaching experiments. Clinical interviews (Bernard, 1988; Clement, 2000; 

Schoenfeld, 1985) involve designing mathematical tasks, asking students to solve those 

tasks, and eliciting students’ ideas with appropriate extension questions. Designed to 

help the researcher understand and characterize students’ concepts of ratio, clinical 

interviews provide a snapshot of the participants’ current ways of operating. A semi-

structured interview affords the researcher a fair degree of freedom in following a 

student’s line of reasoning, improvising new tasks, and creating and testing hypotheses 

about the student’s understanding on the spot (Ginsburg, 1997). 
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In order to investigate the nature of student learning and the development of 

concepts over time, some mathematics educators rely on the teaching experiment 

(Cobb & Steffe, 1983; Steffe & Thompson, 2000). Teaching experiments often leverage 

initial findings from written assessments and clinical interviews in order to develop a 

tentative progression of tasks. Researchers then work with a small number of 

participants (although this number can range from 1 to an entire classroom of students) 

over an extended number of sessions in order to develop models of student thinking 

and learning through teaching interactions. The teaching experiment method demands 

a flexibility requiring any initial sequence of tasks to serve only as a rough model of 

instruction. During and after each session, researchers will engage in iterative cycles of 

teaching actions, formative assessment and model building of students’ thinking, and 

revision of future tasks and invention of new tasks on an ongoing basis. This flexibility 

enables the ongoing development, testing, and revision of hypotheses about students’ 

conceptions throughout the data collection process. 

Towards Synthesis – From Conflict to Complementarity 

 These differences noted, we argue that the very divergence in our questions and 

methods holds much productive potential. Multi-method techniques have long been 

theorized to be good ways to build richer understandings of complex constructs (e.g., 

Brewer & Hunter, 1989; Johnson & Onwuegbuzie, 2004). Unfortunately, research 

methods are in large part dictated by the theoretical commitments of investigators. 

Thus, to date, the rich classroom experiments preferred by Ellis and the basic cognitive 

tasks privileged by Matthews have de facto been cast as incompatible or mutually 

exclusive methodological choices. This need not be the case. Indeed, perhaps the most 
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powerful experience in the current collaboration has been that it required each of us to 

consider seriously the merits in the other’s method. It would be inaccurate to describe 

the result as a theoretical sea-change for either, but it has certainly piqued interest, 

prompted theoretical elaboration and led to new questions. We briefly adumbrate a 

couple of ways that the collaboration has led to some convergence below. 

 Convergence on ratio. On first glance, the differences in the definition of ratio that 

we each advance might appear to be one of our most intractable disagreements. After 

all, one of us has explicitly argued that ratios are things in the world and the other has 

argued that they are not. However, there is much more common ground here than 

initially meets the eye. On the one hand, Matthews now acknowledges the value of 

thinking about ratio as human-constructed multiplicative mathematical object. Indeed, 

this recognition is at the core of his call for methods to “mathematize” ratio. On the other 

hand, Ellis now acknowledges the value of attempting to leverage perceptual 

experience. In fact, this recognition is part and parcel of her pedagogy described above, 

which relies heavily on using students’ perceptions of dynamic motion to promote 

reflection on the nature of covariation. In the final analysis, the disagreement is less 

about the foundations of each other’s arguments and more about the proper use of the 

term ‘ratio’. 

 This appears to be a classic case of what Wittgenstein (1953/2001) referred to as 

“bumps that the understanding has got by running its head up against the limits of 

language” (p 41). In the respective sections above, for Ellis the term ratio was technical 

and precise, referring to a very specific sort of mathematical object, whereas for 

Matthews the term referred to something broader and fuzzier that is even somewhat 
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accessible to non-human animals. We have realized much of the tension in our 

approaches is resolved if we distinguish between two concepts that we might refer to as 

“perceived ratio,” which is chiefly nonsymbolic and approximate, and “mathematical 

ratio,” a precise, language mediated concept. In coming to understand that we were 

referring to two related but somewhat distinct constructs, a common question emerged: 

How can we help learners leverage perceived ratio to build mathematical ratio? Several 

potential strands of research questions naturally branch off from this larger guiding 

question, questions that our divergent methodologies might combine to explore in 

complementary ways. Below we will elaborate on one such question and allude to a few 

more. 

How might we leverage perceptual learning using nonsymbolic perceived ratio to 

help provide a foundation for constructing mathematical ratio? Researchers interested 

in perceptual learning have long argued that perception is not simply synonymous with 

low-level sensation, but is highly selective and can be a source of complex and abstract 

understandings (Barsalou, 2008; Gibson, 2014; Goldstone & Barsalou, 1998; 

Goldstone, Landy, & Son, 2010; Kellman, Massey, & Son, 2010). It would be interesting 

to use perceptual training from cognitive science to facilitate intuitive understanding of 

perceptual ratio and to adopt techniques from mathematics education research to 

scaffold construction of mathematical ratio from naïve foundations in perceptual ratio.  

For example, consider the dynamic perceptual ratio matching task shown in Figure 

12. In this example, students are presented with a target nonsymbolic ratio composed of 

line segments on the left and encouraged to manipulate the length of the orange line 

segments to create a match on the right. Upon completion, the student is given 
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immediate feedback regarding a properly constructed match. Because the target and 

the response vary with regard to the absolute size and alignment of component line 

segments, there are relational features of the stimuli that must covary in specific ways 

(i.e., the orange:blue length ratio) to maintain equivalence of the perceptual ratios 

involved. Over a multitude of trials, such practice might help tune students’ perceptually-

based intuitions to the relations among those core features. When coupled with 

appropriate prompts, the use of the displays could facilitate rich conversations that can 

help make explicit the intuitions behind the perceived equivalence. This in turn might 

help transform a naïve sensitivity to equivalence among perceptual ratio stimuli into a 

conscious appreciation of a ratio as a mathematical object.  

 

Figure 5. Sequential screenshots from a dynamic perceptual ratio matching task. (a) 

Participants are initially presented with a target ratio composed of line segments on the 

left side of the screen along with an incomplete ratio to the right. Participants are asked 

to adjust the components of the incomplete ratio so that the two match. In this case 

participants are asked to adjust the length of the orange bar to try to make the 

orange:blue line ratios match. (b) Once the participant submits a response, the 

computer gives feedback on what the correct answer would have been (farthest right). 

In this case, the red box lets the participant know that their submission (center) is quite 

far from the correct value. Note that for these ratios, the jitter between orange and blue 

a) b)
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lines is an irrelevant dimension that ensures participants cannot make a match by 

simple scaling of an identical figure. 

 

The above-described matching tasks would enable us to not only identify how well 

students perceive equivalent ratios, but also potentially to foster better attention to and 

conscious appreciation of perceptual intuitions over time. Interviewing a subset of the 

participants would provide additional data about the particular relational features 

students consciously attend to, the manner in which they attend to the simultaneous 

changes in the lengths of the provided lines, and the concepts on which they draw when 

constructing ratio matches. The combined data from the dynamic perceptual ratio 

matching tasks and clinical interviews would then inform the development of a 

hypothetical learning trajectory (Clements & Sarama, 2004; Simon, 1995) for building 

internalized-ratio through covariation. This hypothetical trajectory would include a set of 

potential tasks and activities and associated conceptual stages through which we 

predict students would progress. We could then test this designed intervention in a 

series of teaching experiments, relying on quantitative pre- and post-assessments to 

triangulate findings from the qualitative data.  

This is but one example of many questions of mutual interest in this domain that 

might be more profitably investigated by the cooperation between our disciplines than if 

we continued to conduct research in our respective silos. Others include: Are some 

quantities more optimal than others for helping learners develop mathematical ratio 

through observing covariaton? How do students’ perceptual intuitions about ratio affect 

the quantities they attend to when constructing mathematical ratio? Can we measure 
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how integrating measures from mathematics education researchers with those from 

psychologists might provide more resolution for measuring rational number knowledge 

than either used in isolation?  

 This is not to suggest that integrating methods will completely bridge the 

theoretical and methodological divides between us. In the final analysis, some of our 

prior theoretical commitments may be irreconcilable, and the key is accepting this fact 

and moving on in spite of such differences. Our fields stand to profit in several ways 

from embracing methodological pluralism and forging on with such integrative projects. 

By incorporating different methods, we generate enriched data sets that we can each 

use within our preferred analytics. That is, independent of deep theoretical shifts, the 

presence of more abundant data obtained by more varied measures can present a 

larger space for inquiry for our preferred analytics. Second, in sharing data and 

perspective, we create real reflexive opportunities that can lead to genuine shifts in 

theoretical perspective. Surely the reach of such shifts will be limited somewhat by the 

depths of our commitments, but the potential remains significant despite these 

constraints. Third, although our methodological orthodoxies may constrain our abilities 

to push for a deep synthesis, those steering conventions need not limit our students in 

the same ways. By offering emerging researchers the opportunities to analyze 

phenomena of interest through different lenses, we create the possibility that our 

trainees may produce a more profound synthesis.  

A Final Note on the Collaboration 

With this project, we have not resolved all of our disagreements, nor do we think 

this would have been a realistic goal. Our epistemological orientations are far enough 
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apart that hope of substantial reconciliation is probably chimerical – and we feel this is 

not unusual (but also not inevitable) for cognitive psychologists and mathematics 

education researchers. Still, we have found substantial common ground on a topic that 

is of great importance for each of us and for our respective fields. In the process, we 

have each gained considerably by engaging with the other’s mode of thought. We have 

grown, and our work is richer as a result. It is our sincere hope that this can be a model 

for collaborations between mathematics education researchers and psychologists more 

generally. Each has its unique insights, and each has its blind spots. By working across 

boundaries, and learning to bracket our differences, it may be that focusing on our 

points of convergence can lead to new productive points of inquiry. In this fashion, we 

might hope to more exhaustively investigate constructs of mutual interest and to push 

knowledge further.  
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i The natural numbers are typically defined either as the set of non-negative integers (e.g., 0, 1, 2, 
3…) or the set of positive integers (e.g., 1, 2, 3,…). For the purposes of this paper, we mean the 
set of positive integers when we refer to natural numbers. 
ii Smith (2012) defines continuous quantities to be unitary objects that can be measured, whereas 
discrete quantities are collections of countable objects.  
iii Thanks to Brandon Singleton for developing the triangle/square task. 
iv Olivia and Wesley are gender-preserving pseudonyms. 


