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This study presents evidence that humans have intuitive,
perceptually based access to the abstract fraction magnitudes
instantiated by nonsymbolic ratio stimuli. Moreover, it shows these
perceptually accessed magnitudes can be easily compared with
symbolically represented fractions. In cross-format comparisons,
participants picked the larger of two ratios. Ratios were presented
either symbolically as fractions or nonsymbolically as paired dot
arrays or as paired circles. Response patterns were consistent with
participants comparing specific analog fractional magnitudes
independently of the particular formats in which they were pre-
sented. These results pose a challenge to accounts that argue human
cognitive architecture is ill-suited for processing fractions. Instead,
it seems that humans can process nonsymbolic ratio magnitudes via
perceptual routes and without recourse to conscious symbolic algo-
rithms, analogous to the processing of whole number magnitudes.
These findings have important implications for theories regarding
the nature of human number sense – they imply that fractions
may in some sense be natural numbers, too.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Formal number concepts and the mathematics built upon them were invented too recently to have
influenced the evolution of our species (Dehaene & Cohen, 2007). How is it then that evolutionarily
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ancient human brains can support these relatively recent numerical inventions? To address this ques-
tion, researchers often look to the basic cognitive architectures upon which culturally established
number concepts might be built. The counting numbers (i.e., 1, 2, 3. . .) – which mathematicians have
dubbed ‘natural’ numbers – are often the focal point of these theories. It makes intuitive sense that
these ‘natural’ numbers might form the groundwork of our understanding of mathematics. These
numbers play a major role not just in counting, but in numerical cognition more generally
(Butterworth, 2010; Gerstmann, 1940; Noël, 2005). Moreover, they map onto basic perceptual abilities
that enumerate discrete sets. This ability to perceptually estimate discrete numerical magnitudes – an
ability granted by what is known as the approximate number system (ANS) – is present not only in
humans but across multiple species (e.g., Dehaene, Dehaene-Lambertz, & Cohen, 1998; Meck &
Church, 1983). Indeed, several researchers have argued that the acquisition of abstract numerical con-
cepts rests upon these evolutionarily inherited enumeration abilities (e.g., Dehaene, 1997; Feigenson,
Dehaene, & Spelke, 2004; Nieder, 2005; Piazza, 2010). By positing such a crucial role for perceptually
based enumeration in the development of number concepts, these theories privilege natural numbers
by proxy, essentially echoing Kroenecker’s famous dictum that ‘‘God made the integers; all the rest is
the work of man’’ (Bell, 1986, p. 477).

However, this ostensibly obvious intuition may obscure the possibility that natural numbers and
enumeration are not alone in their ‘naturalness’. In this study, we administered cross-format compar-
ison tasks to explore whether humans have an intuitive sense of nonsymbolic ratio magnitude that
allows them to perceive and judge fractional1 number values in ways similar to how the approximate
number system allows them to perceive and judge natural number magnitudes. The cross format nature
of the comparisons is important: Successful comparison within a particular format might be accom-
plished by methods that need not necessarily require magnitude abstraction, such as scaling (e.g., Ahl,
Moore, & Dixon, 1992).

By contrast, cross-format comparisons require some sort of abstraction of magnitudes to allow
comparison on the same scale. Each comparison involved fraction magnitudes instantiated in
nonsymbolic forms that were not amenable to simple enumeration or to manipulation via symbolic
algorithms, insuring any such abstractions must be perceptually based.

Minimally, two pieces of evidence seem important to support the possibility that participants
perceive abstract ratio magnitudes:

1. Participants must prove sensitive to the equivalence of fraction values across formats when
perception is the only plausible route to identifying those magnitudes, and

2. Participants must complete comparisons in a short enough time course to preclude the use of
conscious algorithms.

Patterns consistent with these constraints would suggest that this sense of proportion is unlikely to be
dependent upon enumeration or estimation of natural number values. In short, such results would
imply that fractions are in some sense ‘natural’ numbers too.
1.1. Primitive ratio processing – A link to natural fraction concepts?

The proposition that fractional number values may be intuitive might seem at odds with the fact
that both children and even highly educated adults often experience considerable difficulties under-
standing symbolic fractions (e.g., Carpenter, Corbitt, Kepner, Lindquist, & Reys, 1981; Ni & Zhou, 2005;
Siegler & Pyke, 2012). For instance, when a nationally representative sample of children was asked
whether 12/13 + 7/8 was closest to 1, 2, 19, or 21, 8th-graders chose 19 and 21 more often than 2
(Carpenter et al., 1981). These problems extend well past middle school, persisting into adulthood.
On the same estimation problem, a nationally representative sample of 17-yr-olds was correct only
37% of the time. Moreover, Stigler, Givvin, and Thompson (2010) found that only 33% of their sample
of community college students could accurately find the largest of four simple fractions. Many have
1 Although we note that a mathematically rigorous treatment of the terms ‘fraction’ and ‘ratio’ considers ratio to be one of
several possible interpretations of fraction concepts, we will use the terms interchangeably throughout this manuscript.



30 P.G. Matthews, D.L. Chesney / Cognitive Psychology 78 (2015) 28–56
argued that these well documented difficulties with fractions stem from innate constraints on human
cognitive architectures (Bonato, Fabbri, Umiltà, & Zorzi, 2007; Dehaene, 1997; Feigenson et al., 2004;
Gallistel & Gelman, 1992; Geary, 2007; Gelman & Williams, 1998; Wynn, 1990). Dehaene (1997)
cogently encapsulated the core of such innate constraints accounts when he wrote:

Some mathematical objects now seem very intuitive only because their structure is well adapted to
our brain architecture. On the other hand, a great many children find fractions very difficult to learn
because their cortical machinery resists such a counterintuitive concept (p. 7).

According to innate constraints theorists, whole number abilities are supported by perceptual sys-
tems that evolved to process discrete numerosities (i.e., sets of countable objects), and these systems
serve as evolutionary precursors for supporting understanding of symbolic numbers (Bailey, Hoard,
Nugent, & Geary, 2012; Dehaene & Cohen, 2007; Feigenson et al., 2004; Gallistel & Gelman, 1992;
Nieder, 2005; Piazza, 2010). Such accounts contend that the major cognitive module for processing
numbers, the ANS, is fundamentally designed to deal with discrete numerosities that correspond to
whole number values. Therefore, innate constraints theorists argue, fractions and rational number
concepts are difficult because they lack a similarly intuitive basis and must instead be built from sys-
tems originally developed to support whole number understanding.

However, Siegler and colleagues have recently called into question the practice of treating fractional
values solely as educational constructs, suggesting that researchers should reexamine the nature of
fractional quantities in hopes of developing a more integrated theory of numerical understanding that
is inclusive of both natural numbers and fractions (Fazio, Bailey, Thompson, & Siegler, 2014; Siegler,
Fazio, Bailey, & Zhou, 2013). The present work addresses this issue. By focusing on perceptual abilities
that naturally map onto fraction magnitudes, this research may show rational numbers to be on more
equal footing relative to natural numbers. Contrary to the innate constraints perspective, we argue that
human cognitive architecture is very much compatible with fraction concepts.

A growing body of evidence suggests that an intuitive, perceptually based cognitive system for pro-
cessing nonsymbolically instantiated fractional magnitudes may indeed exist (e.g., Duffy,
Huttenlocher, & Levine, 2005; Jacob & Nieder, 2009b; Jacob, Vallentin, & Nieder, 2012; McCrink &
Wynn, 2007). This cognitive system seems to represent and process magnitudes of nonsymbolic ratios
(hereafter also referred to as nonsymbolic fractions) in several representational formats, such as frac-
tions formed by the relative lengths of two lines. Several extant lines of research suggest that this
sensitivity to nonsymbolic ratio magnitudes may emerge before formal education and that it even
extends across species (e.g., Jacob et al., 2012; McCrink & Wynn, 2007).

McCrink and Wynn (2007) investigated this ratio perception from a developmental perspective.
They habituated 6-month old infants to specific nonsymbolic ratios instantiated in multiple versions
using blue dots and yellow Pac-Men (e.g. the ratio 2:1 was instantiated using multiple sets, including
the ratios 8:4, 38:19, and 22:11). After habituation, infants looked longer at novel ratio stimuli that
differed by a factor of two (e.g., a 4:1 ratio). McCrink and Wynn thus revealed a specific ability of
infants to perceive differences in ratios (i.e. nonsymbolic fractions) as opposed to the overall number
of items in a set. Moreover, some studies with preschool-aged children suggest that the perception
and encoding of the ratio between two stimuli may actually be easier for young children than encod-
ing absolute values of a single stimulus (Duffy et al., 2005; Huttenlocher, Duffy, & Levine, 2002). Other
work has similarly demonstrated human sensitivity to nonsymbolic fraction magnitudes across the
developmental time span (Boyer & Levine, 2012; Jacob & Nieder, 2009b; Jacob et al., 2012; Mix,
Levine, & Huttenlocher, 1999; Singer-Freeman & Goswami, 2001; Sophian, 2000; Sophian & Wood,
1997; Spinillo & Bryant, 1991).

This sensitivity to nonsymbolic fraction magnitudes does not end with homo sapiens. Recent
research has also demonstrated that non-human primates can accurately assess the magnitudes of
ratios composed of pairs of non-symbolic magnitudes. Vallentin and Nieder (2008) trained monkeys
on match-to-sample tasks using ratios composed of pairs of line segments (e.g., one half instantiated
as or as ). The monkeys performed far better than chance (85.5% accuracy), showing
considerable sensitivity to specific fractional magnitudes and even rivaling adult human performance
on the same task. Moreover, using single-celled recordings from the monkeys, Vallentin and Nieder
also found individual neurons that responded to specific ratio values constructed of line segments.
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These neurons fired strongly in response to particular ratio magnitudes, without regard to the sizes of
their components.

In sum, studies have found the ability to process nonsymbolic ratios in non-human primates
(Vallentin & Nieder, 2008), 6-month old infants (McCrink & Wynn, 2007), elementary school aged chil-
dren (Jeong, Levine, & Huttenlocher, 2007) and adults (Fabbri, Caviola, Tang, Zorzi, & Butterworth,
2012; Meert, Grégoire, Seron, & Noël, 2012). The existence of this sensitivity among uneducated chil-
dren and even across species led Jacob et al. (2012) to posit that dedicated neural networks have
evolved that automatically process nonsymbolic ratio magnitudes. The current research tests one
implication of the existence of such a dedicated ratio processing system: If human beings possess a
system that allows them to represent fractional magnitudes abstractly and amodally, it follows that
they should be able (a) to process and compare nonsymbolic fraction magnitudes instantiated in dif-
ferent formats and (b) to complete such processing perceptually, without recourse to symbolic
algorithms.

1.2. Numerical distance effects and nonsymbolic fractions

Despite the clear evidence that humans can perceive nonsymbolic ratio magnitudes, the question
of whether symbolic fractions and nonsymbolic fractions map to the same analog ratio magnitude
code remains unexplored. To date, there is little evidence demonstrating a link between perceptual
sensitivity to nonsymbolic ratio magnitudes (which exists even among innumerate infants and non-
human primates) and the acquired understanding for magnitudes of symbolic fractions (but see
Fazio et al., 2014; Matthews, Chesney, & McNeil, 2014). Previous studies of ratio estimation and pro-
duction have required some level of cross-format mapping of fraction magnitudes (Barth & Paladino,
2011; Hollands & Dyre, 2000; Spence, 1990; Stevens & Galanter, 1957; Varey, Mellers, & Birnbaum,
1990) but were not explicitly designed to encourage rapid perceptual access of the holistic magnitudes
instantiated by nonsymbolic ratios. These studies have generally used estimation or scaling paradigms
that unfortunately precluded analysis of perceived similarity when stimuli of different magnitudes are
compared – precisely the type of analysis that is usually conducted to assess intuitive analog repre-
sentations of magnitude (Halberda & Feigenson, 2008; Meert, Grégoire, & Noël, 2010; Moyer &
Landauer, 1967; Schneider & Siegler, 2010). Consequently, questions of whether maps between sym-
bolic and nonsymbolic fractions access the same amodal magnitude remain unexplored.

We aimed to fill this gap by asking if cross-format comparisons of fractions instantiated in multiple
formats (i.e. perceptually accessed ratios composed of dots or circles vs. traditional Arabic fraction
symbols) demonstrate numerical distance effects. The numerical distance effect – the phenomenon
whereby error rates and reaction times vary negatively with increasing distance between the magni-
tudes of stimuli to be compared – is considered to be a hallmark of analog magnitude representation
(Moyer, Bradley, Sorensen, Whiting, & Mansfield, 1978; Nieder, 2005; Schneider & Siegler, 2010;
Sekuler & Mierkiewicz, 1977; Siegler & Pyke, 2012; Sprute & Temple, 2011). The numerical distance
effect as originally conceived by Moyer and Landauer (1967) was seen as a special case of a more gen-
eral process of magnitude comparison. Moyer and Landauer argued that if number comparisons pro-
ceeded on a perceptual level, then numerical comparisons should follow the same sort of
psychophysical functions as ‘‘judgments of inequality for length of lines, pitch and colour. . .’’
Following Moyer and Landauer’s precedent, the existence of distance effects among numerical stimuli
has generally been taken to indicate an intuitive representation of the magnitudes of a given class of
numbers on an internal mental number line (Dehaene, Dupoux, & Mehler, 1990; Kallai & Tzelgov,
2009; Nieder, 2005; Restle, 1970; Rubinsten, Henik, Berger, & Shahar-Shalev, 2002; Schneider &
Siegler, 2010).

Until recently, numerical distance effects were primarily investigated using symbolic whole num-
bers or their nonsymbolic analogs – numerosities. However, several recent studies have shown that
human adults: (a) exhibit distance effects when comparing symbolic fractions under certain condi-
tions (DeWolf, Grounds, Bassok, & Holyoak, 2014; Jacob & Nieder, 2009a; Kallai & Tzelgov, 2009,
2012; Meert et al., 2010, 2012; Schneider & Siegler, 2010; Siegler, Thompson, & Schneider, 2011)
and (b) exhibit distance effects when comparing nonsymbolic ratios within a particular format
(Jacob & Nieder, 2009b; Vallentin & Nieder, 2008). Critically, we posit that different formats for fraction
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magnitudes, whether symbolic or nonsymbolic, converge on a single amodal representation of mag-
nitude, (i.e., a ‘mental number line’; Siegler et al., 2011). We therefore predict that participants should
exhibit distance effects for cross-format comparisons of fractions similar to those typically found for
within-format magnitude comparisons (Halberda & Feigenson, 2008; Moyer et al., 1978; Odic,
Libertus, Feigenson, & Halberda, 2013). Such results would indicate that people indeed have intuitive
perceptual access to abstract fractional magnitudes.
1.3. Overview of the current experiments

The experiments reported below investigated the existence of numerical distance effects using
cross-format magnitude comparison tasks. Participants picked the larger of two stimuli, which were
fractions instantiated either symbolically as Arabic numerals or nonsymbolically using stimuli whose
magnitudes arguably could not be ascertained by use of conscious algorithms. In Experiment 1, we
investigated whether participants would exhibit distance effects when comparing symbolic fractions
to discrete but uncountable (in the brief time allotted) dot ratio stimuli. In Experiment 2, we investi-
gated whether participants would exhibit distance effects when comparing symbolic fractions to con-
tinuous circle ratio stimuli whose individual components did not correspond to any particular number
value. Finally, in Experiment 3 we investigated whether participants would exhibit distance effects
when comparing dot ratio magnitudes to circle ratio magnitudes, two nonsymbolic forms.
2. Experiment 1

Experiment 1 was conducted to provide initial evidence that humans would show numerical
distance effects when comparing fraction stimuli across representational formats. We used Arabic
numerals and nonsymbolic dot arrays to present fractions of various magnitudes. The dot arrays were
sufficiently numerous that they could not be serially counted in the time taken to complete trials and
could not be easily partitioned. Thus, dot ratio magnitudes could not plausibly be ascertained via
conscious algorithmic strategies. As a result, participants had to rely on perceptual routes to make
judgments of these nonsymbolic fraction magnitudes. Numerical distance effects would suggest that
(a) participants’ perceptual systems were sensitive to fraction magnitudes when presented as non-
symbolic dot arrays and (b) these visuospatially accessed magnitudes can be mapped to symbolically
represented magnitudes.
2.1. Method

2.1.1. Participants
Participants were 27 undergraduate students from a major Midwestern university, participating for

partial course credit (22 female; ages M = 19.7, range = 18–22).
2.1.2. Materials and design
Participants completed paired comparisons in which they selected the larger of two fraction stimuli

presented in two separate formats. One member of each pair was a symbolic fraction composed of
Arabic numerals, and the other was a nonsymbolic ratio composed of dot arrays (see Fig. 1).
2.1.2.1. Symbolic stimuli. Symbolic stimuli were ten irreducible proper fractions composed of single
digit Arabic numerators and denominators from 2 to 9 (i.e., 2/9, 2/7, 3/8, 3/7, 5/9, 3/5, 2/3, 3/4, 5/6,
and 7/8, see Table 1). We chose fractions of this form because previous work has shown that irreducibil-
ity and exclusion of unit fractions (i.e. those with one in the denominator such as 1/9, 1/8, 1/7. . .)
encourage participants to access the holistic magnitudes of fractions as opposed to using componential
strategies (Kallai & Tzelgov, 2009, 2012; Meert et al., 2010; Schneider & Siegler, 2010; Sprute & Temple,
2011). The subset chosen spanned the range of 18 possible values for fractions of this type. Numerals
for a given component were approximately 48.5 mm tall.
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Fig. 1. Experiment 1: Sample depiction of a symbolic fraction vs. dot ratio comparison trial. Participants answered by pressing a
button box indicating which stimulus they thought had the larger fractional value.
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2.1.2.2. Dot ratio stimuli. Dot ratios were composed of pairs of dot arrays separated by a bar in the mid-
dle to form nonsymbolic ratios corresponding to the values 2/9, 2/7, 3/8, 3/7, 5/9, 3/5, 2/3, 3/4, 5/6, and
7/8 (e.g., the value of 2/9 might correspond to an array ratio of 33/150 dots). Although dot array ratios
did not match these values exactly, all were within a 1% tolerance of the listed values. Arrays were
composed of black dots on a white background. Displays controlled dot surface area so that all arrays
had the same total surface area regardless of dot numerosity. Individual dot size varied both within
and between arrays, such that the size of a given dot did not precisely correlate with array numerosity.
Dots were randomly and evenly distributed in each array, and each nonsymbolic ratio occupied a
54 � 109 mm space.

A random number generator was used to create two separate sets of stimuli to control for correla-
tion of component numerosity with total ratio magnitude (see Table 1). One set was constructed such
that the numerosity of the numerator component was uncorrelated with overall ratio magnitude. A
second set was constructed such that both denominator numerosity and total numerosity (i.e., numera-
tor plus denominator) were uncorrelated with overall fraction magnitude. Component denominators
varied considerably among stimuli within each set. When dot ratios were presented on the left side
of a comparison, stimuli were selected from the set with uncorrelated denominator and total numeros-
ity. When dot ratios appeared on the right, stimuli were selected from the set with uncorrelated
numerators. To discourage participants from counting or use of computational procedures when
estimating ratios, the smallest numerosity displayed in any given array was 21 (range of 21–150).

2.1.3. Procedure
Each participant completed all comparisons in one hour-long session that also included other com-

parison tasks not discussed in this report. Participants first saw instructions, then received five prac-
tice trials, and then performed the experimental trials. No feedback was given for practice or
experimental trials.

For each trial, a fixation cross appeared in the center of the screen for 500 ms. The fixation cross
was immediately followed by presentation of dot array and Arabic fraction comparison stimuli. The
stimuli remained on-screen until the participant responded with a button box to indicate which frac-
tion was greater (i.e., the left button to indicate the left side was greater, and right button to indicate
the right was greater). For dot ratios, participants were specifically told that ‘‘the sizes of the dots don’t
matter. What matters is the ratio of the number of dots on top to the number of dots on the bottom’’
and that ‘‘There will be A LOT of dots for each ratio, so please don’t try to count. Just go by feel.’’ All 90
possible magnitude combinations were presented two times each – once with dots on the left and
once with dots on the right. This resulted in a total of 180 trials per participant. Trial order was ran-
domized, and each participant saw all the same stimuli.

2.1.4. Overview of analyses
As noted above, the numerical distance effect is a special case of a more general psychophysical

function corresponding to the increased difficulty of discriminating between two magnitudes as the
difference between them decreases. When comparing perceptually accessed stimulus magnitudes,



Table 1
Overall magnitudes and components of symbolic, dot, and circle ratio comparison stimuli in Experiments 1–3.

Stimulus format Values

Symbolic fractions 2/9 2/7 3/8 3/7 5/9 3/5 2/3 3/4 5/6 7/8
Dot ratios, uncorrelated numerators 33/150 33/116 27/72 21/49 26/47 22/37 47/71 31/41 21/25 46/53
Dot ratios, uncorrelated denominators 28/126 39/138 25/66 63/147 56/101 70/117 73/110 54/72 98/117 96/110
Circle ratios, uncorrelated numerators (mm/mm) 13.9/29.7 10.2/19.1 15.3/24.8 22.4/34.2 18.1/24.1 16.8/21.7 8.7/10.6 13.9/29.7 10.2/19.1 15.3/24.8
Circle ratios, uncorrelated denominators (mm/mm) 7.6/16.5 16.3/30.4 16.5/26.8 25.7/39.3 26.1/34.7 32.5/42.0 31.1/38.0 7.6/16.5 16.3/30.4 16.5/26.8
Decimal equivalents .22 .29 .38 .43 .56 .6 .67 .75 .83 .88

Note: Dot ratios list the number of dots in numerator and denominator arrays. Circle ratios are listed terms of the diameters in mm of the component circles used. Area ratios correspond to
the squares of the ratios formed by circle diameters.
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people typically demonstrate an S-shaped sigmoid response curve that is symmetrical about a point of
subjective equality (PSE). The PSE is the point at which participants on average judge presented stimuli
as approximately equal in magnitude (i.e., the point at which participants were 50–50 on the larger vs.
smaller judgment). Our initial analyses sought to map this psychophysical function, rather than fol-
lowing the more typical route of immediately regressing error rates or reaction latencies against
the distance between stimuli (e.g., Dehaene et al., 1990; Kallai & Tzelgov, 2009, 2012; Moyer &
Landauer, 1967).

It may be unreasonable to expect the PSE to converge exactly with the point of true equality when
magnitudes are compared across different formats, as minor differences in stimuli can bias perceived
magnitudes even within formats (e.g., the well known illusion that items higher relative to the horizon
are perceived as larger, see Kingdom & Prins, 2009, for a discussion on how to analyze psychophysical
data when such effects are present). Between-format magnitudes mappings can be both inexact and
biased (e.g., Izard & Dehaene, 2008). Simply put, the point where stimuli appear to be equivalent need
not agree with objective equality (Kingdom & Prins, 2009). This allows for a situation in which perfor-
mance both demonstrates a perfectly symmetrical psychometric function, but simultaneously demon-
strates a bias whereby the PSE is shifted from where it would canonically be expected to be. Use of
simple error rates in such cases can obscure the distance-based symmetry of response patterns.
Such biases are not necessarily expected in single-format studies where minor perceptual effects
can be easily balanced, but must be tested and corrected before one can effectively use simple regres-
sion methods to investigate distance effects in cross-format studies.

With this in mind, our analyses always began with fitting participant responses to a psychophysical
function. Specifically, we modeled participant response patterns using a logistic function, which is
often used to model psychophysics functions (Kingdom & Prins, 2009; Wichmann & Hill, 2001).2

Next, we estimated relevant PSEs as a measure of bias in converting magnitudes between formats.
Finally, we performed a bias-corrected version of the traditional distance effect analyses that could
appropriately assess the effects of interstimulus distance on accuracy and response latency in this
cross-format design.
2.2. Results

2.2.1. The psychophysical function
Prior to analyses, responses with reaction times that were more than 3 SDs beyond the mean were

removed. This resulted in a loss 1.9% of data points (94 of 4860). Preliminary inspection revealed that
three participants appeared to have systematically reversed the instructions, consistently choosing
the smaller stimulus for at least one presentation order. Two participants clearly chose the larger ratio
when Arabic fractions were presented on the right, but chose the smaller ratio when Arabic fractions
were presented on the left. The third participant reversed directions entirely, always selecting the
smaller stimulus. This behavior was observed even for extreme distances characterized by low error
rates in the overall sample (e.g. 2/9 vs. 7/8), indicating that it was not due to perceptual limitations,
but instead reflected a systematic reversal of response choices. We excluded these three participants
as non-compliant and ran our analysis on the remaining analytic sample of 24 participants. We only
report results for the reduced sample, but follow-up analyses that included reverse-coded responses
for the excluded participants yielded similar results.

We used logistic regression using all trials as data points with likelihood of judging the symbolic
fraction stimulus to be larger as the dependent variable. The independent variables were: (1)
Distance, calculated by subtracting the magnitude of the dot stimulus in each comparison pair from
the magnitude of the symbolic stimulus, (2) SymbolsRight, a dummy-coded presentation order variable
denoting whether symbolic fractions or nonsymbolic dot array fractions were presented on the right
(SymbolsRight = 1), and (3) a Distance � SymbolsRight interaction term.
2 Note, we chose to model the data using the logistic function – as opposed to other options such as the cumulative normal or
the Weibull – for three reasons: (1) our primary purpose was to fit the data well and to estimate the PSE, not to make claims about
the underlying neuropsychological mechanism of the judgment, (2) the logistic function is easily solved with relatively few data
points, and (3) the logistic function is easily interpreted.
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Table 2
Experiment 1, symbols vs. dots: results of logistic regression of probability of judging symbolic
stimulus larger against distance and side of presentation – pooled and person-level data.

Parameter Estimate

Pooled data: 4267 data points
Nagelkerke Pseudo R2 0.39
Constant (SE) �1.07 (.06)**

Distance (SE) 4.98 (.23)**

SymbolsRight (SE) 0.12 (.09)
Distance � SymbolsRight (SE) �0.37 (.32)
PSE .21

Person level data
Median Nagelkerke Pseudo R2 (SD) .54 (.17)
% of sample with significant effect for Distance 95.8% (23/24)
% of sample with significant effect for SymbolsRight 4.2% (1/24)
% of sample with significant effect for interaction 8.3% (2/24)
Mean PSE SymbolsRight (SE)a .21 (.03)
Mean PSE DotsRight (SE)a .22 (.03)

** p < .01.
a Means of individual PSEs were calculated after excluding the sole participant who failed to

demonstrate a significant effect for distance. This participant had a SymbolsRight PSE of �.59, and a
DotsRight PSE of 3.40.
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The logistic function explained much of the variance, with Nagelkerke’s Pseudo R2 = .39. Participant
judgments clearly exhibited a bias: As Fig. 2 shows, the collective sample showed a PSE of .21 regard-
less of whether symbolic fractions were displayed on the right or on the left, and thus regardless of
whether stimuli were controlled such that the numerator or denominator was uncorrelated with
overall ratio magnitude (see Table 2, top half). This indicates that throughout the range of
comparisons, participants perceived dot ratios of a given magnitude as larger than their corresponding
symbolic fractions by a value of �.21. For example, a dot ratio with a magnitude equivalent to .21 (or
about 1/5) was seen as equivalent in size to a symbolic fraction with a magnitude of �.42 (about 3/7.
Hence, the perceived size of a dot ratio could be estimated by adding .21 to the size of the
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Fig. 3. Experiment 1: Error rate and RT patterns. (a) The graph of raw error rate displays a discontinuous jump due to the cross-
format bias, with artificially high errors when symbolic stimuli are larger and artificially low errors when dot stimuli are larger.
(b) Adjusted errors, calculated on the bias-corrected adjusted distance scale, are symmetrical about zero and reach a maximum
of .5, regardless of the format of the larger stimulus. (c) Symmetry of the RT prior to bias correction is centered about
approximately .2 to .3, confirming the bias of perceived equality. (d) By contrast, performance is centered closer to zero on the
bias corrected distance scale. Error bars reflect standard errors of the means. Note: Distances were binned to the nearest .05 for
illustrative purposes in the figure but were entered exactly into the regressions.
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corresponding symbolic ratio. These results were not mere artifacts of pooling across participants.
Logistic functions fit separately for each individual participant yielded patterns similar to the
aggregate for 23 of 24 individuals (see Table 2).

2.2.2. Adjustments for bias
As anticipated, the subjective bias when comparing dot ratios and Arabic fraction values rendered

raw accuracy inappropriate as a metric for examining how comparison performance varied with dis-
tance. The need to correct for bias is clearly demonstrated by the pattern observed in Fig. 3a: When
calculated without corrections for bias, participant error rates rose only to 20% as distance approached
zero when dot array ratios were the larger stimuli and discontinuously jumped to nearly 70% as this
zero threshold was crossed and symbolic ratios became the larger stimuli. To illustrate the nature of
this bias, consider the comparison of 5/9 (or .56) to the larger fraction 3/5 (or .6). When 5/9 is instan-
tiated as dots, the perceptual bias amounts to comparing a dot ratio with a perceived magnitude of .77
(i.e., .56 + .21 due to bias) to a symbolic magnitude of .6, which would systematically generate an
error. Similarly, when 3/5 is instantiated as dots, the bias effectively renders the comparison as .82
vs. .56, which would artificially decrease errors by exaggerating the difference in the correct direction.

However, we were able to create a bias adjusted metric that could parallel traditional numerical
distance effect analyses and similarly capture the degree to which participant confidence falls as
the absolute distance between stimulus magnitudes decreases. We applied adjustments to dot ratio
magnitudes to correct for the cross-format bias in size perception. Because the PSE indicated dot ratios
were perceived as .21 larger than symbolic fractions, we first added .21 to dot ratio magnitudes, yield-
ing measures of perceived magnitude. Note that we could have alternatively chosen to subtract .21
from the magnitudes of symbolic fractions, as the process would have resulted in an equivalent trans-
lation of the distance between dot and symbolic stimuli. Next, we calculated adjusted distance and
adjusted accuracy based on the new perceived magnitudes and their corresponding distances (defined
for each comparison as symbolic magnitude – perceived dot ratio magnitude). The resulting adjusted
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error patterns were symmetrical about zero on the adjusted distance scale (see Fig. 3b) and were
appropriate for applying standard regression analysis of distance effects. We performed a secondary
analysis using reaction latencies as a face valid check on our bias adjustments, and this analysis
yielded similar results (Fig. 3c and d).

2.2.3. Distance effects
To parallel analyses from previous research (Kallai & Tzelgov, 2009; Meert et al., 2012; Schneider &

Siegler, 2010), we conducted analyses at two separate levels: group level regressions and supplemental
individual level regressions. The group level analyses used the summary measures of mean adjusted
error rates and median reaction times at each distance as the dependent variables. For individual level
analyses, we performed regressions for each participant, using all individual trials as data points.

We regressed adjusted error rates and reaction times against: (1) absolute adjusted distance, calcu-
lated by taking the absolute value of adjusted distance as defined in Section 2.2.2, (2) SymbolsRight, as
specified in Section 2.2.2, and (3) a Distance � SymbolsRight interaction term. Because some studies of
the numerical distance effect have found that error falls off logarithmically with distance (e.g.,
Dehaene et al., 1990; Schneider & Siegler, 2010), we also ran parallel regressions using the logarithm
of the adjusted distance as the independent variable in both error rate and RT regressions. Trials on
which participants answered incorrectly (after adjustment) were excluded from the analysis of reac-
tion times as is the standard procedure in the literature (Bonato et al., 2007; Dehaene et al., 1990;
Kallai & Tzelgov, 2009, 2012; Meert et al., 2010; Sekuler & Mierkiewicz, 1977). Note that this bias cor-
rection resulted in adjusting distances of .21 to a corrected distance of 0. As items at a distance of 0 are
equal, there is no ‘‘correct’’ answer. Thus, trials at this comparison distance (2% of the remaining data
points) were dropped from the bias-corrected analyses.

2.2.3.1. Adjusted error rate analysis. The mean adjusted error rate was .23 (SD = .42) across all trials.
Group level analysis (Table 3) revealed that error rates fell as distance increased (blin = �.83, p < .01;
blog = �.85, p < .01). Adjusted errors decreased from highs near 50% for comparisons with adjusted
distances near zero to rates below 10% for comparisons over larger distances. Whether dot ratios were
presented on right or left had no effect on accuracy (blin = .04, p = .68; blog = .06, p = .48), nor did
presentation position interact with distance (blin = .01, p = .92; blog = .02, p = .86). All told, there was
a pronounced effect of distance on accuracy, and the position of stimulus presentation did not
moderate the effect.
Table 3
Experiment 1, symbols vs. dots: results of linear regression of error and response time against distance and side of presentation,
pooled and person-level analyses.

Level of analysis, independent variables, and coefficients Dependent variables

Linear regression Logarithmic regression

Error rate Median RT Error rate Median RT

Group level
Adj. R2 .68 .49 .70 .37

b Distance �.83** �.72** �.85** �.65**

b DotsLeft .04 �.21 .06 �.10
b Distance � DotsLeft .01 .06 .02 .09

Person level
Median adj. R2 .11 .05 .11 .05
SD of adj. R2 .05 .06 .07 .05

% of sample with significant effect for Distance 91.7 58.3 91.7 45.8
22/24 14/24 22/24 11/24

% of sample with significant effect for DotsLeft 0 0.0 0.0 4.2
0/24 0/24 0/24 1/24

% of sample with significant effect for interaction 0.0 8.33 4.2 4.2
0/24 2/24 1/24 1/24

Note. All coefficients are standardized.
** p < .01.
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2.2.3.2. Reaction time analysis. Patterns with RT were consistent with those found for error rates
(Table 3). It is noteworthy that the median RT was 1406 ms (SD = 1104) across all trials. This reaction
latency was only �300 ms longer than the�1100 ms Halberda, Mazzocco, and Feigenson (2008) found
participants took when comparing individual dot arrays in a single-format comparison task. This time
difference is on the order of how long it takes to count a single item during rapid subvocal counting
(i.e., about 240 ms, see Whalen, Gallistel, & Gelman, 1999). Given that any given arithmetic algorithm
should take at least as long as subvocal counting, these RT data seem to preclude the possibility that
participants used conscious algorithms for processing nonsymbolic ratios. If, as Halberda et al. (2008)
attest, such fast reaction times indicate that participants were making comparisons based on percep-
tual judgments, the current data seem to warrant similar conclusions.

2.2.3.3. Diffusion modeling. The analyses presented so far examined RT and accuracy data separately.
Moreover, the RT data from incorrect trials were excluded from the analyses. Recent work has shown
that both these aspects of numeric discrimination tasks can be incorporated into a single analysis
using a diffusion model (e.g., Ratcliff, Love, Thompson, & Opfer, 2012). We therefore used a diffusion
model to establish whether our conclusions were supported when considering RTs and accuracy
simultaneously. We subdivided the stimuli into 6 distance bins, with distance defined as the differ-
ence between the symbol ratio and the dot ratio (i.e., <�.33, �.33 to �.17, �.17 to 0, 0 to .17, .17 to
.33, and >.33). Using Vandekerckhove and Tuerlinckx’s (2007, 2008) Diffusion Model Analysis
Toolbox package for Matlab, we simultaneously modeled twelve aspects of the task: Boundary sep-
aration (i.e., carefulness), non-decision time (i.e. RT not attributable to deciding which side is larger),
starting point (i.e. bias toward choosing one kind of stimulus), drift rates for each of the six stimulus
bins (i.e. the speed at which participants move toward a decision), and variability in non-decision
time, starting point, and drift rate. The model held boundary separation constant across different dis-
tance bins. Given our sign conventions, positive drift rates indicate movement toward deciding the
symbolic ratio is larger, and negative drift rates indicate movement toward deciding the dot ratio is
larger. As with the logistic regression of the pooled data presented above, the model was based on tri-
als aggregated across all compliant participants, and trials with RTs more than 3SD away from the
mean were excluded. Results are shown in Table 4 and Fig. 4.

In previous work with whole number magnitudes, the numerical distance effect emerged in diffu-
sion models as faster drift rates for larger distances (Ratcliff et al., 2012). We found this same pattern
Table 4
Diffusion models of performance in Experiments 1, 2, and 3 using pooled data from all compliant participants.

Experiment 1 Experiment 2 Experiment 3

Modeled parameters
Boundary separation 0.256 0.212 0.210
Non-decision time (s) 0.456 0.450 0.541
Variability in non-decision time 0.409 0.453 0.585
Starting point 0.113 0.102 0.106
Variability in starting point 0.122 0.098 0.141
Variability drift rate 3.04 � 10�7 4.23 � 10�8 0.022
Drift rates for ratio difference bins

<�.33 (M = �.474) �0.110 �0.133 �0.137
�.33 to �.17 (M = �.247) �0.083 �0.097 �0.083
�.17 to 0 (M = �.101 �0.054 �0.061 �0.043
0 to .17 (M = .101) �0.013 �0.009 0.033
.17 to .33 (M = .247) 0.018 0.048 0.097
>.33 (M = .474) 0.067 0.112 0.189

Regression predicting drift rates from mean bin value
Slope (SE) 0.190*** (.009) 0.265*** (.018) 0.349*** (.021)
Intercept (SE) �0.029*** (.003) �0.023* (.006) 0.009 (.007)
R2 0.990 0.983 0.986

* p < .05.
*** p < .001.
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when modeling our ratio data. Drift rates increased as the difference between the symbolic and dot
ratios increased. We also found a significant negative y-intercept indicating that, indeed, the dot-ratios
were perceived as larger than equivalent symbol ratios. We found similar results when we modeled
drift rates for each participant separately (see Supplement S1).

2.3. Discussion

Performances on cross format comparisons were consistent with participants basing their compar-
isons on amodal ratio values. First, when comparing dot ratios with symbolic fractions, participants
demonstrated performance well fit by sigmoid curves that typify psychophysical functions.
Although participants demonstrated a bias in judging sizes across formats, this bias was sufficiently
consistent that it could be accounted for by adjusting ratios values by a constant of .21. Second,
although the cross-format nature of the task made analyzing numerical distance effects from raw
error inappropriate, bias corrected calculations based on the PSE demonstrated classic distance effects,
in both error rates and reaction time.

These results suggest that participants used perceptual pathways to access the fractional values of
the nonsymbolic stimuli involved. Three facts buttress this interpretation of our results: (1) There was
no simple componential route available to convert the non-symbolic stimuli to symbolic fractions. The
nonsymbolic stimuli instantiated fraction stimuli using components that varied considerably from
ratio to ratio, including controls for area and for correlation of components to total magnitude. (2)
The components of the nonsymbolic stimuli could not be serially counted in the 1406 ms taken on
average trials. Thus, there is little possibility that participants converted dot ratios to symbolic form
via some count-based method. (3) Prior research using a similar paradigm with natural number values
(Halberda et al., 2008) found that RTs for single-format comparisons of dot arrays were only �300 ms
shorter than they were for the current task. Given that the current comparisons were across formats
and that each individual member of a stimulus pair was itself composed of two components, the addi-
tional 300 ms would seem to preclude the use of conscious algorithms for processing nonsymbolic
ratios.

We conducted a supplemental experiment to gather additional support for our conclusion that
participants were not converting nonsymbolic ratios to symbolic form prior to making comparisons
(see Supplement S2). We had participants complete a series of different ratio comparisons so we could
analyze RT transaction costs for different format combinations. We found that cross-format compar-
isons between symbolic and nonsymbolic forms took no longer than comparisons between pairs of
symbolic fractions. Moreover, participants actually took significantly longer to make comparisons
between pairs of symbolic fractions than they took to make comparisons between pairs of nonsym-
bolic ratios of the same format. These patterns are inconsistent with conversion of nonsymbolic
components to symbolic form prior to comparison, because converting components should have
imposed some conversion cost in terms of RT. It instead appears that participants accessed the values
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of nonsymbolic stimuli via some perceptual route. This perceptually based access to nonsymbolic ana-
logs of fractions stands in contrast to arguments that there is no intuitive perceptual basis upon which
to build fraction knowledge (e.g., Dehaene, 1997; Feigenson et al., 2004; Gelman & Williams, 1998)

We recognize that our method for controlling dot array areas may invite the charge that other
visual aspects such as contour length and average dot size could be used to complete the task instead
of the numerosities of arrays per se. Indeed, formulating controls for dot arrays is a vexing issue –
Gebuis and Reynvoet (2012) have cogently argued that controlling for such parameters is nearly
intractable, concluding ‘‘that it is unlikely that a special mechanism exists that can process nonsym-
bolic number independent of its visual cues’’ (p.647; see also De Smedt, Noël, Gilmore, & Ansari, 2013).
Fortunately, this is not a critical issue for our theory: Our theory is that nonsymbolic ratio magnitudes
can be perceived in multiple formats, including ratios instantiated using continuous forms. Thus, even
if parameters other than numerosity are used to extract the magnitudes of dot array ratios, it does no
damage to our position. Indeed, Experiment 2 was conducted with ratios made with circles for the
specific purpose of showing that this ratio perception applies with continuous variables in addition
to discrete numerosities.
3. Experiment 2

A multitude of prior studies from over a century of research in psychophysics have demonstrated
that humans cannot accurately estimate the number of dots in arrays of the size employed in
Experiment 1 (e.g., Crollen, Castronovo, & Seron, 2011; Indow & Ida, 1977; Izard & Dehaene, 2008;
Kaufman, Lord, Reese, & Volkmann, 1949; Krueger, 1984; Taves, 1941). Estimates typically under-
estimate the actual numerosities and vary extensively both within and between subjects.
Nevertheless, it might still be argued that participants in Experiment 1 estimated the numerosities
of individual components of dot arrays and used these estimates as a basis for comparing symbolic
and nonsymbolic ratios rather than perceiving the values of dot ratio stimuli holistically. To
circumvent these arguments, in Experiment 2 we used ratios composed of circle areas as a stronger
test of the ability to perceive nonsymbolic ratio magnitudes. Because circle areas – unlike dot arrays
– do not correspond to any particular numbers, the argument for componential conversion to
symbolic numbers for conscious use in algorithms seems less plausible. Moreover, because the
numerator and denominator components for any given ratio stimulus are of different sizes, there is
no way to partition circles such that count based strategies are plausible.

3.1. Method

3.1.1. Participants
Participants were a separate sample of 27 undergraduate students from a major Midwestern

university, participating for course credit (25 female; ages M = 19.6, range = 18–22).

3.1.2. Materials and procedure
Each participant completed all comparisons in one hour-long session that also included other com-

parison tasks not discussed in this report. The experimental procedure was identical to that of
Experiment 1 with the exception that nonsymbolic ratios were composed of circles instead of dots.
Each stimulus was composed of a pair of circles separated by a horizontal bar in the middle to form
a fraction, with a 2% tolerance (Fig. 5). The ratios instantiated were in terms of circle areas correspond-
ing to the same values as the dot array stimuli of Experiment 1 (see Table 1). Circles were black against
a white background. Component denominators varied among stimuli within each set. Circle diameters
ranged from 7.6 mm to 42.0 mm. As in Experiment 1, each nonsymbolic ratio stimulus occupied a
54 � 109 mm space.

As with dot ratios, a random number generator was used to create two separate sets of stimuli: one
set such that the areas of the numerator components were uncorrelated with overall ratio magnitude
and a second set such that both denominator areas and total summed component areas were uncor-
related with overall magnitude. When circle ratios were presented on the left side of a comparison,
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Fig. 5. Experiment 2: Sample depiction of a symbolic fraction vs. circle ratio comparison trial. Participants answered by
pressing a button box indicating which stimulus they thought had the larger fractional value.
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stimuli were selected from the set with uncorrelated denominator and summed. When dot ratios
appeared on the right, stimuli were sampled from the set with uncorrelated numerator areas.
3.2. Results

3.2.1. The psychophysical function
Analyses paralleled those of Experiment 1. Prior to analyses, responses with reaction times that

were more than 3 SDs beyond the mean were removed. This resulted in a loss 1.4% of data points
(70 of 4860). We used logistic regression using all trials as data points with likelihood of judging
the symbolic fraction stimulus to be larger as the dependent variable. The independent variables were:
(1) Distance, calculated by subtracting the magnitude of the dot stimulus in each comparison pair from
the magnitude of the symbolic stimulus, (2) whether symbolic fractions or nonsymbolic circle
fractions were presented on the right (SymbolsRight = 1), and (3) a Distance � SymbolsRight interaction
term. Although some participants showed poor model fit, there were no instances of instruction
reversal such as those seen in Experiment 1, so no additional data were trimmed.

The logistic function explained much of the variance in responses, with Nagelkerke’s Pseudo
R2 = .46. As with dot ratio stimuli from Experiment 1, participant judgments exhibited a clear and
consistent bias. On average, participants’ subjective perceptions were such that circle ratios were



Table 5
Experiment 2, symbols vs. circles: results of logistic regression of probability of judging symbolic
stimulus larger against distance and side of presentation – pooled and person-level data.

Parameter Estimate

Pooled data: 4790 data points
Nagelkerke Pseudo R2 0.46
Constant (SE) �0.60 (.06)**

Distance (SE) 5.65 (.23)**

SymbolsRight (SE) 0.15 (.08)*

Distance � SymbolsRight (SE) �0.66 (.31)*

PSESymbolsRight .09
PSECirclesRight .11

Person level data: 180 data points
Median Nagelkerke Pseudo R2 (SD) .59 (.22)
% of sample with significant effect for Distance 92.6% (25/27)
% of sample with significant effect for SymbolsRight 11.1% (3/27)
% of sample with significant effect for interaction 3.7% (1/27)
Mean PSE SymbolsRight (SE) .08 (.03)
Mean PSE CirclesRight (SE) .08 (.04)

* p < .05.
** p < .01.
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judged to be larger than symbolic stimuli of the same absolute magnitude. The perceived size of a
given circle ratio stimulus relative to the corresponding symbolic stimulus was its actual magnitude
plus approximately .09 when symbols were presented on the right and .11 when instead circles were
presented on the right. There was also a small but significant interaction between distance and the
side on which circles were displayed (p = .03). The function was slightly steeper when participants
saw symbolic fractions on the left compared to when they saw circle ratios on the left. However, this
difference was quite small in substantive terms, so the functions remained nearly identical (see Fig. 6).
Thus, across the range of stimuli, bias was estimated as approximately .10. Effects from summary level
analyses were mirrored by analyses at the individual level. Logistic functions fit separately for each
individual participant yielded patterns similar to the aggregate for the vast majority of individuals
(see Table 5).

3.2.2. Adjustments for bias
Analysis of distance effects mirrored that for dot ratios. First we applied adjustments to circle ratio

magnitudes, adding .10 to each to yield perceived magnitude, whereas symbolic stimuli received no
such adjustments. Next, we calculated adjusted distance and adjusted error based on the new perceived
magnitudes and their corresponding adjusted distances (defined as symbolic magnitude – perceived
circle ratio magnitude). The resulting adjusted error patterns were symmetrical about the adjusted
distance of zero as shown in Fig. 7. As in Experiment 1, we performed supplemental checks using reac-
tion times as a face validity check on our bias analyses, and this analysis yielded similar results as
shown in Fig. 7b and c.

3.2.3. Distance effects
We conducted group and individual level analyses mirroring those of Experiment 1. We regressed

adjusted error rates and reaction times against: (1) absolute adjusted distance, calculated by taking the
absolute value of adjusted distance as described in Section 3.2.2, (2) SymbolsRight, as specified in
Section 3.2.2, and (3) a Distance � SymbolsRight interaction term. We also ran parallel regressions
using the logarithm of adjusted interstimulus distance as the independent variable in both error
and RT regressions. Trials on which participants answered incorrectly (after adjustments) were
excluded from the analysis of reaction times.

3.2.3.1. Adjusted error rate analysis. The mean adjusted error rate was .21 (SD = .41). Group level analy-
sis revealed that error rates fell as absolute distance between stimuli increased (blin = �.79, p < .01;
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Fig. 7. Experiment 2: Error rate and RT patterns. (a) The graph of raw error rate displays a discontinuous jump due to the cross-
format bias, with artificially high errors when symbolic stimuli are larger and artificially low errors when circle stimuli are
larger. (b) Adjusted errors, calculated on the bias-corrected adjusted distance scale, are symmetrical about zero and reach a
maximum of .5, regardless of the format of the larger stimulus. (c) Symmetry of the RT prior to bias correction is centered about
approximately .1 to .2, confirming the bias of perceived equality. (d) By contrast, performance is centered closer to zero on the
bias corrected distance scale. Error bars reflect standard errors of the means. Note: Distances were binned to the nearest .05 for
illustrative purposes in the figure but were entered exactly into the regressions.

Table 6
Experiment 2, symbols vs. circles: results of linear regression of error and response time against distance and side of presentation –
pooled and person-level analyses.

Level of analysis, independent variables, and coefficients Dependent variables

Linear regression Logarithmic regression

Mean errors Median RT Mean errors Median RT

Group level
Adj. R2 .53 .38 .66 .27

b Distance �.79** �.58** �.89** �.53**

b SymbolsRight �.06 .03 .15 �.06
b Distance � SymbolsRight .12 �.10 .16 �.02

Person level
Median adj. R2 .10 .07 .11 .04
SD of adj. R2 .05 .07 .07 .07

% of sample with significant effect for Distance 88.9 51.9 81.5 37.0
(24 of 27) (14 of 27) (22 of 27) (10 of 27)

% of sample with significant effect for SymbolsRight 3.7 7.4 7.4 0
(1 of 27) (2 of 27) (2 of 27) (0 of 27)

% of sample with significant effect for interaction 3.7 3.7 7.4 0
(1 of 27) (1 of 27) (2 of 27) (0 of 27)

Note. All coefficients are standardized.
** p < .01.
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blog = �.89, p < .01). Adjusted errors decreased from highs around 50% for comparisons with adjusted
distances near zero to rates below 10% for comparisons over larger distances. There was neither a
main effect for whether circles ratios were presented on the right or left (blin = �.06, p = .65; blog = .15,
p = .16) nor an interaction between distance and presentation side (blin = .12, p = .40; blog = .16, p = .19).
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All told, there was a pronounced effect of distance on accuracy, and the order of stimulus presentation
did not moderate the effect. Individual level analyses paralleled these results (Table 6).

3.2.3.2. Reaction time analysis. Patterns with RT were consistent with those found for error rates
(Table 6). Moreover, the median RT was 1097 ms (SD = 910), nearly identical to the �1100 ms
participants took when comparing individual dot arrays in Halberda et al. (2008), a single-format
comparison task. As with Experiment 1, this would seem to preclude the use of conscious algorithms
for processing nonsymbolic ratios. Thus, as with Halberda et al.’s results, our findings indicate
participants made comparisons based on analog judgments.

3.2.3.3. Diffusion analysis. We again used a diffusion model to simultaneously analyze RT and accuracy
data, using the same process as in Experiment 1, except here using data from comparisons between
symbolic and circle ratio stimuli. Again, drift rates increased as the difference between the symbolic
and nonsymbolic circle ratios increased. There was also a significant negative y-intercept indicating
that, indeed, the circle ratios were perceived as larger than equivalent symbol ratios (see Table 4
and Fig. 4). Finally, similar results were found modeling drift rates for each participant separately
(see Supplement S1).

3.3. Discussion

The findings of Experiment 2 extend those of Experiment 1 to a new class of nonsymbolic fractions
– those composed of circle areas. When making cross-format comparisons, participants exhibited pat-
terns of behavior consistent with their having the ability to perceive holistic fraction values when pre-
sented nonsymbolically. First, when comparing circle ratios with symbolic fractions, participants
demonstrated performance well fit by sigmoid curves that typify psychophysical functions.
Although participants demonstrated a bias in judging sizes across formats, this bias was sufficiently
consistent that it could be corrected for by adjusting circle ratio values by a constant of .10.
Accordingly, the adapted protocol for analyzing distance effects yielded results consistent with partici-
pants accessing the holistic magnitudes of the nonsymbolic ratio stimuli.

Second, because nonsymbolic circle stimuli could not easily be converted to symbolic form via enu-
meration or symbolic calculation strategies, these results suggest that participants used a perceptual
pathway to access the fractional values of the stimuli presented. This has an important additional
implication: The continuous nature of the stimuli is an important consideration, because ratios made
of continuous stimuli can extend beyond rational numbers to include all positive real number values.

Finally, these cross format comparisons took no longer than comparisons of pairs of symbolic frac-
tions (Supplement S2). Hence, they were completed in a time course that would seem to preclude use
of conscious algorithmic strategies for converting nonsymbolic ratios into symbolic form. Thus, we
interpret our findings to indicate that participants made comparisons based on analog judgments
when judging circle ratios just as with dot ratios.
4. Experiment 3

For comparisons in Experiments 1 and 2, at least one stimulus from each pair was a symbolic
fraction. Thus, arguments positing that participants had perceptual access to analog fractional values
are somewhat muddled; only half of the stimuli in each task demanded that participants access per-
ceptual pathways to the fraction magnitudes involved. The potential remains that there may have
been some unknown pathway by which participants could leverage symbolic knowledge of Arabic
fraction stimuli to approximate the values of nonsymbolic fractions. Experiment 3 therefore explored
comparisons of fraction values across two different nonsymbolic formats. This manipulation required
perceptual processing to access the nonsymbolically instantiated fraction values for both stimuli in a
comparison set. If nonsymbolic magnitudes are accurately mapped across dissimilar formats, it would
provide strong evidence that participants are accessing an abstract fractional magnitude – one that is
indexed by multiple nonsymbolic instantiations.
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4.1. Method

4.1.1. Participants
Participants were a separate sample of 51 undergraduates students from a major Midwestern uni-

versity, participating for course credit (44 female; ages M = 19.8, range = 18–24).

4.1.2. Materials and procedure
Each participant completed all comparisons in one hour-long session that also included other com-

parison tasks not discussed in this report. The circle and dot ratio stimuli used were the same as those
used in Experiments 1 and 2. The experimental procedure was identical to those of Experiments 1 and
2, with two exceptions. First, comparisons were always made on nonsymbolic pairs consisting of one
circle ratio and one dot ratio (Fig. 8). Second, because two sets of test stimuli were created both for
circle and for dot ratios, we took additional steps to balance the controls used. Dot ratios with
uncorrelated numerators were always compared with circle ratios with uncorrelated denominators.
Similarly, dot ratios with uncorrelated denominators were always compared with circle ratios with
uncorrelated numerators. All 90 possible magnitude combinations were presented two times each –
once with dots on the left and once with dots on the right – for each of these two types of control
pairings. This resulted in a total of 360 trials per participant. Trial order was randomized, and each par-
ticipant saw all the same stimuli. In parallel with Experiments 1 and 2, participants were instructed to
‘‘try to feel out the ratio instead of counting or trying to apply a formula.’’ Trials were randomized, and
each participant saw all the same stimuli.

4.2. Results

4.2.1. The psychophysical function
Analyses paralleled those of Experiments 1 and 2. Prior to analysis, responses with reaction times

that were more than 3 SDs beyond the mean were removed resulting in a loss of 1.9% of all data points
(357 of 18,360). We used logistic regression with likelihood of judging the dot stimulus larger as the
dependent variable. The independent variables were: (1) Distance, calculated by subtracting the mag-
nitude of the circle stimulus from that of the dot stimulus, (2) whether the stimulus on the right was a
circle ratio or a dot ratio, and (3) a Distance � CirclesRight interaction term.

Preliminary inspection revealed two anomalies with participant performance that could compro-
mise the validity of the results. One participant chose the dot ratio stimulus on 99.4% of all trials,
regardless of the discrepancy in magnitudes. An additional 10 participants appeared to have reversed
the directions, consistently choosing the smaller stimulus for at least one entire experimental block.
This behavior was observed even for extreme distances (e.g. nonsymbolic ratios corresponding to
2/9 vs. 7/8), indicating that it was not due to perceptual limitations, but instead reflected a systematic
reversal of response choices. We excluded these 11 non-compliant participants and ran the analysis on
500 ms

X

Fig. 8. Experiment 3: Sample depiction of a symbolic circle ratio vs. dot array ratio comparison trial. Participants answered by
pressing a button box indicating which stimulus they thought had the larger fractional value.



Table 7
Experiment 3, dots vs. circles: results of logistic regression of probability of judging dot stimulus
larger against distance and side of presentation – pooled and person-level data.

Parameter Estimate

Pooled data
Nagelkerke Pseudo R2 0.50
Constant (SE) .14 (.03)**

Distance (SE) 5.87 (.13)**

CirclesRight (SE) 0.00 (.04)
Distance � CirclesRight (SE) �0.11 (.19)
PSE �.02

Person level data
Median Nagelkerke Pseudo R2 (SD) .61 (.21)
% of sample with significant effect for Distance 97.5% (39/40)
% of sample with significant effect for CirclesRight 12.5% (5/40)
% of sample with significant effect for interaction 10.0% (4/40)
Mean PSE CirclesRight (SE)a �.03 (.02)
Mean PSE DotsRight (SE)a �.03 (.02)

** p < .01.
a Means of individual PSEs were calculated after excluding the sole participant who failed to

demonstrate a significant effect for distance. This participant had a CirclesRight PSE of �1.16, and a
DotsRight PSE of �12.14.
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the remaining analytic sample of 40 participants. Results are shown in Table 7. We only report results
for the reduced sample of 40, but supplementary analyses that included reverse-coded responses for
the 10 participants who reversed the directions yielded similar results.

The logistic function explained much of the variance in the responses of the analytic sample, with
Nagelkerke’s Pseudo R2 = .50. As shown in Fig. 9, the collective sample showed a PSE of �.02 regardless
of whether circles were presented on the left or on the right. There was no interaction between
distance and presentation side, so the slopes of the functions were statistically identical. This means
each was essentially a translation of the other by a constant factor of about .02. Logistic functions fit
separately for each individual participant yielded patterns similar to the aggregate analysis for the
overwhelming majority of individuals (Table 7).
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4.2.2. Adjustments for bias
Given the very small absolute size of the bias, we decided that there was no need to apply bias

corrections before calculating distance effects. Indeed, Fig. 10 shows that the raw data patterns both
for RT and for error appear to be symmetrical about a distance of zero, serving as a face validity check
that there was no need to include bias corrections. We were therefore able to examine distance effects
using the traditional methods with unadjusted error rates and distances.

4.2.3. Distance effects
We conducted group and individual level analyses parallel to those of Experiments 1 and 2

(Table 8). We regressed error rates and reaction times against: (1) Absolute distance, calculated by tak-
ing the absolute value of distance as specified in Section 4.2.1, (2) CirclesRight, as specified in
Section 4.2.1, and (3) a Distance � CirclesRight interaction term. We also ran parallel regressions using
the logarithm of interstimulus distance in place of absolute distance in both error and RT regressions.
Trials on which participants answered incorrectly after adjustments were excluded from the analysis
of reaction times.
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Table 8
Experiment 3, dots vs. circles: results of linear regression of error and response time against distance and side of presentation –
pooled and person-level analyses.

Level of analysis, independent variables, and coefficients Dependent variables

Linear regression Logarithmic regression

Mean errors Median RT Mean errors Median RT

Group level
Adj. R2 .77 .56 .88 .46
b Distance �.89** �.79** �.95** �.75**

b CirclesRight .00 .02 .04 .21
b Distance � CirclesRight .02 .08 .03 .15

Person level
Median adj. R2 (SD) .10 (.04) .03 (.05) .11 (.05) .02 (.05)
% of sample with significant effect for Distance 90.0 62.5 92.5 62.5

(36 of 40) (25 of 40) (37 of 40) (25 of 40)
% of sample with significant effect for CirclesRight 10.0 5.0 0 7.5

(4 of 40) (2 of 40) (0 of 40) (3 of 40)
% of sample with significant interaction 5 2.5 7.5 2.5

(2 of 40) (1 of 40) (3 of 40) (1 of 40)

Note. All coefficients are standardized.
** p < .01.
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4.2.3.1. Error rate analysis. The mean error rate across all trials was 29.7% (SD = 45.7%). Group level
analyses revealed that mean error rates fell as the absolute distance between stimuli increased (blin =
�.89, p < .01; blog = �.95, p < .01). Errors decreased from highs in excess of 40% for comparisons with
adjusted distances near zero to rates near 5% for comparisons at the largest distances. There was nei-
ther a main effect for whether circle ratios were presented on the right or left (blin = .00, p = .99;
blog = .04, p = .70) nor an interaction between distance and presentation side (blin = .02, p = .88;
blog = .03, p = .81). All told, there was a pronounced effect of distance on accuracy, and this sole variable
explained the vast majority of the variance in mean performance at the group level.

4.2.3.2. Reaction time analysis. Patterns for RT were consistent with those found for error rates (Table 8).
Additionally, median RT was just under 1116 ms (SD = 846 ms). This was nearly identical to the
1100 ms participants took to compare individual dot arrays in Halberda et al. (2008), despite the fact
that both comparison stimuli were composed of two separate components. Moreover, in our supple-
mentary experiments, we found that this type of cross-format comparison was completed faster than
comparisons between pairs of symbolic fractions. We interpret these findings indicate that the non-
symbolic comparisons were made using analog judgments without recourse to conscious algorithms.

4.2.3.3. Diffusion analysis. We used a diffusion model to simultaneously analyze RT and accuracy data,
as in Experiments 1 and 2. Again, drift rates increased as the difference between the symbolic and cir-
cle ratios increased, as would be expected if people judge ratios based on analog magnitude (see
Table 4 and Fig. 4). We found similar results modeling drift rates for each participant separately
(see Supplement S1). There was no significant y-intercept, confirming that equal Dot and Circle ratios
of the same value were perceived as having different equal magnitudes.

4.3. Discussion

Participants exhibited distance effects both for error rates and for RT when judging nonsymbolic
ratio magnitudes across dissimilar formats. To be clear, the magnitudes compared were defined
relationally by the relative sizes of components of nonsymbolic stimuli, and they could not plausibly
have been deduced by conscious computational methods in the time taken. This provides strong evi-
dence that participants had perceptual access to nonsymbolic ratio magnitudes and that these per-
ceptually accessed magnitudes bear the same signature of analog magnitude representation seen in
other perceptually oriented tasks (Moyer & Landauer, 1967; Moyer et al., 1978).

It is noteworthy that participants completed this task just as quickly as they completed the Dot vs.
Arabic and Circle vs. Arabic comparison tasks, despite the fact that it involved two nonsymbolic ratios.
If participants made comparisons by converting visuospatial stimuli to symbolic numbers prior to
conversion, then the expectation would be that the tasks of Experiments 1 and 2 would be completed
more quickly because only one of two stimuli required conversion. The speed of comparison times for
nonsymbolic comparisons in Experiment 3 is consistent with conversion to the same analog magni-
tude code without initial conversion to symbolic numbers. Here we also underscore our finding that
participants took significantly longer to make comparisons between pairs of symbolic fractions than
they took to make comparisons between pairs of nonsymbolic ratios of the same format (see
Supplement S2). Together, these results strongly suggest that participants do not first convert non-
symbolic fractions to symbolic form when making comparisons between nonsymbolic stimuli.

Finally, we found it interesting that cross-format nonsymbolic comparisons did not exhibit bias.
This stands in contrast to the symbolic-to-nonsymbolic comparisons. We put forth two speculative
explanations for these results. First, it may be that the two nonsymbolic formats are internally repre-
sented using the same analog magnitude code, whereas comparison of symbolic to nonsymbolic mag-
nitudes requires a mapping step to translate symbolic fractions to the analog code. Izard and Dehaene
(2008) advanced such a model for mapping between nonsymbolic numerosity arrays and symbolic
whole numbers, and a similar process may be at play here. Alternatively, it may be that that compar-
ing the two nonsymbolic formats may indeed require mapping, but that the mapping between non-
symbolic forms is more efficient than mapping between symbolic and nonsymbolic formats, leaving
less space for the introduction of bias.
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5. General discussion

5.1. Summary

This series of experiments presented evidence that human cognitive architectures can provide per-
ceptual access to approximate abstract fraction magnitudes instantiated by nonsymbolic stimuli.
Participants demonstrated the ability to systematically map nonsymbolic fraction magnitudes to
symbolic fractions, both using stimuli composed of discrete numerosities (Experiment 1), and using
stimuli composed of continuous circle areas (Experiment 2). Moreover, participants mapped between
nonsymbolic ratio formats with a high degree of fidelity (Experiment 3). Response patterns for all
three types of cross-format comparisons consistently bore the signature of intuitive analog magnitude
representation, whether considering error rate or reaction latency. Our conclusions, accordingly, par-
allel those of Moyer and Landauer (1967) upon finding distance effects among Arabic numerals:
‘‘These results strongly suggest that the process used in judgments of differences in magnitude
between [ratio values] is the same as, or analogous to, the process involved in judgments of inequality
for physical continua’’ (p. 1520). These results pose a challenge to accounts that argue that human cor-
tical structures are ill-suited for processing fractions.

This is the first line of research demonstrating such distance effects for fractional magnitudes
across different notational formats (see also Matthews et al., 2014). As we noted in the literature
review, the cross-format nature of the comparison is important because successful comparison within
a particular format might be accomplished by methods that do not necessarily require magnitude
abstraction, such as scaling. By contrast, cross-format comparisons require some sort of abstraction
of magnitudes to allow comparison on the same scale.

Several features of the protocol made it unlikely that participants were able to use procedural
manipulations or calculations to generate their responses. The discrete dot stimuli of Experiment 1
were too numerous and presented too briefly to be serially counted in the time participants took to
complete the tasks (median RT of 1406 ms). The continuous circle stimuli used in Experiment 2 had
no unique mapping to numbers, and those tasks were completed relatively briefly as well (median
RT of 1097 ms). Further, participants had no tools with which to measure the diameters of the circles.
The tasks of Experiment 3, which compared nonsymbolic dot and circle fractions, were also completed
briefly (median RT of 1116 ms). Finally, nonsymbolic stimuli were constructed such that individual
component sizes did not correlate with overall fraction magnitude, eliminating auxiliary cues to frac-
tion magnitude. All told, these features strongly militate against the possibility that participants could
follow procedural routes to find the fractional values of the stimuli. Together, these performances
provide evidence that humans have an intuitive sense of nonsymbolic ratio magnitude that allows
them to perceive and judge fractional number values in ways similar to how the ANS allows them
to perceive and judge natural number magnitudes.
5.2. The nature of cross-format comparisons

Perhaps our most notable finding is the regularity of the patterns with which participants
compared magnitudes across formats. Although it is true that participants demonstrated biases for
comparisons involving nonsymbolic stimuli vs. Arabic fractions, these biases were sufficiently uniform
that they could be corrected by applying a constant adjustment throughout the range of stimuli used
in each study. Performance clearly followed the symmetrical s-shaped psychometric sigmoid for all
three types of comparisons. In fact, comparisons across nonsymbolic formats demonstrated remark-
ably minimal bias, indicating that mapping across these nonsymbolic formats was highly accurate.
This remained true despite the use of multiple controls to ensure that component sizes would not
be good cues to overall fraction magnitude. Thus, it seems that participants could access and translate
among intuitive analog representations of fractional magnitudes.

Cross format comparisons also demonstrated some differences, most notably those between
Experiments 1 and 2. Dot ratio vs. symbolic fraction comparisons yielded slower RTs and larger biases
than the circle ratio vs. symbolic fraction comparisons. As for the RT differences, some research
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suggests that humans may have superior acuity for discriminating between regular areas (e.g., circles,
rectangles, and ovals) when compared to acuity for numerosities, as indicated by lower weber
fractions (e.g., Morgan, 2005; Nachmias, 2008; Solomon, Morgan, & Chubb, 2011). This implies that
internal representations of circles may simply be less noisy, leading to superior RT. However, this
explanation raises the question of why overall error rates for the two types of comparisons remained
quite similar (23% vs. 21%). Alternatively, it may be that participants spent longer on dot ratio compar-
isons because they felt that they should be able to be more successful with dot ratios than circle ratios.
After all, dot arrays could in principle be counted, even though participants did not have enough time
to perform the counts. This realization may have made participants a bit more uncomfortable with the
level of uncertainty involved with the task. In contrast, participants may have been more willing to
yield that circle ratio estimates were uncertain.

As for the differences in bias between Experiments 1 and 2, we once again appeal to the model put
forth by Izard and Dehaene (2008). In this model, internal magnitudes are represented on an internal
continuum or number line. Converting from this nonsymbolic continuum to number symbols involves
mapping from this internal representation to a grid composed of symbolic numbers. In the absence of
calibration, this symbolic grid is assumed to be some idiosyncratic affine transformation of the canoni-
cal internal continuum (i.e. it is some linear transformation of the internal continuum). Thus, the
translation from nonsymbolic to symbolic form is generally expected to exhibit some sort of bias.

We speculate that for a given class of nonsymbolic stimuli, the affine transformation requires selec-
tion of a modulus from which all other values are scaled. We interpret the data as suggesting that in
this case participants tend to select these moduli such that the bias is higher for dot ratios than for
circle ratios. We previously found data consistent with this pattern using similar stimuli in numerical
estimation tasks (Chesney & Matthews, 2012). When we asked participants to give numerical
estimates for dot array ratios and for circle array ratios, slopes for both sets of estimates were near
one, but dot ratios had a higher y-intercept. At this time, we have no well developed theory regarding
why the modulus for dot ratios should necessarily be higher than that for circle ratios.

Our speculations provide directions for future investigation, but the precise nature of the percep-
tual processes involved remains unclear. That said, our design does allow us to draw some conclusions
about the likelihood that participants proceeded by first converting nonsymbolic ratios to their
symbolic equivalents. Two aspects of the results are inconsistent with such an account. First, compar-
isons of dot ratios vs. circle ratios – two nonsymbolic formats – took no longer than comparisons of dot
ratios to symbolic fractions or circle ratios to symbolic fractions. If both nonsymbolic terms were
sequentially converted to symbolic equivalents, the expectation would be that comparisons requiring
conversion of two nonsymbolic stimuli would take longer than the comparisons requiring converting
only a single nonsymbolic stimulus.

Second, our supplemental experiment using both within format and between format comparisons
found that comparisons between two symbolic fractions took significantly longer to complete than
comparisons between nonsymbolic ratios (see Supplement S2). Even cross-format comparisons
between dot and circle ratios were completed significantly faster than comparisons between symbolic
fractions. This stands as strong evidence that participants were not converting nonsymbolic stimuli
into symbolic form in order to perform comparisons.

5.3. A generalized number less than one?

These findings also raise questions concerning Kallai and Tzelgov’s (2009) claim that analog
representations of fractions are generalized as a numerical value less than one. Kallai and Tzelgov
investigated whether comparisons in which participants were asked to choose the larger of two sym-
bolic fractions would be influenced by the congruence of the overall physical sizes in which fractions
were presented and vice versa. They found that physical size congruity failed to influence comparisons
of fraction pairs and that the magnitudes of symbolic fractions failed to influence a physical size com-
parison task. This led them to conclude that humans do not easily process the sizes of specific sym-
bolic fraction magnitudes, and that this is largely due to the fact that fractions are composed of
components (i.e., numerators and denominators) whose processing is more immediate and poses
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interference for processing of holistic fraction magnitudes. Our results address Kallai and Tzelgov’s
conclusion in at least two ways.

First, our results mark one case in which processing of holistic fraction values is quite specific and
relatively rapid. To be sure, distance effects are based on distances between specific values, and it is
hard to see how a generalized fraction magnitude would be compatible with the observed distance
effects. It seems that comparing symbolic fractions with nonsymbolic equivalents, rather than with
other symbolic fractions, may be a fertile ground for exploring how symbolic fraction magnitudes
are represented.

Second, we suggest that the lack of a size congruity effect might be explained by the fact that
fraction magnitudes are defined relationally by the ratio between two stimuli (the numerator and
the denominator) whereas the size manipulations Kallai & Tzelgov used only involved total nonsym-
bolic magnitude (total summed area of both components), where the sizes of the numerators and
denominators within a fraction were held constant (e.g. 4/5 vs. 3/7). An alternative manipulation that
instead varied the component sizes within each fraction, instantiating the larger symbolic fraction
with the smaller physical ratio (e.g., 4/5 vs. 3/7), might reveal a ratio-based size congruity effect.
We currently have studies in progress with data to date supporting this hypothesis.
5.4. Open questions

This research raises many questions for future investigation regarding the nonsymbolic ratio
processing system. One set of questions regard the nature of the interface between ratio perception,
symbolic fraction knowledge and the pedagogical processes that might link the two. For instance,
Dehaene’s (1997) charge that human neural structure is incompatible with fractions was in part based
on the fact that learners often find it quite difficult to gain a correct understanding of symbolic frac-
tions. If, as our results and others suggest (e.g., Boyer, Levine, & Huttenlocher, 2008; Duffy et al., 2005;
Vallentin & Nieder, 2008), people come equipped with a cognitive apparatus that processes fractional
values in nonsymbolic form, why do people encounter such difficulties understanding symbolic
fractions?

We suggest that these difficulties may result in part because the most common methods of teach-
ing do not optimally engage the intuitive ratio processing system. For instance, the majority of current
educational initiatives teach fractions using either a sort of equipartitioning or an equal sharing logic
that taps counting skills and understanding of whole-number magnitudes (e.g., Cramer, Post, &
delMas, 2002; Empson, 1999). It may be that these processes encourage counting and thereby discour-
age use of the perceptually based ratio processing system. Indeed, past work has shown that young
children perform significantly worse on ratio matching tasks when partitioned, countable stimuli
are used than when continuous stimuli are used (Boyer & Levine, 2012; Boyer et al., 2008; Jeong
et al., 2007).

It remains to be shown whether we can leverage this perceptual sensitivity for ratios to promote
learning about fractional symbols. It may be that the optimal way to foster such an appreciation is
to use perceptual learning techniques (Goldstone, Landy, & Son, 2010; Kellman, Massey, & Son,
2010; Kellman et al., 2008). That is, it may prove effective to build symbolic fraction knowledge upon
perceptual sensitivity to nonsymbolic fractional values by way of multiple and varied perceptual
exemplars, akin to word and category learning (e.g., Markman & Wachtel, 1988). Thus, we might even-
tually come to teach what a fraction symbol like 1/3 represents in much the same way that we teach
young children what the symbol 4 represents or what a ‘dog’ or a ‘cat’ is.

To our knowledge, Fazio et al. (2014) is the only journal published study to have investigated the
relations between nonsymbolic ratio sensitivity and symbolic fraction knowledge (see also Lewis,
Matthews, & Hubbard, 2014). Fazio et al. found that number line estimation with symbolic fractions
was indeed predictive of math achievement among 5th grade students. We note that the proportion
matching account put forth by Barth and Paladino (2011) would imply that this is precisely the sort of
task that assesses the links between symbolic and nonsymbolic representations of fractions. Clearly,
there is much space for exploration of the effect of interventions targeted to leverage nonsymbolic
ratio abilities to help promote learners’ understanding of symbolic fraction magnitudes.
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This work also opens up a space for future inquiry regarding how the acuity of nonsymbolic ratio
perception relates to development more generally. Are individual differences in the ability to discrimi-
nate between visuospatial fractions related to symbolic fraction knowledge test performance or to
math achievement more generally? Which nonsymbolic formats are discriminated with the most
acuity, and might such acuity predict pedagogical effectiveness? Perhaps most importantly, research-
ers need to investigate how cross-format distance effects develop with age and experience. We are
currently in the beginning stages of a project investigating the developmental progression of nonsym-
bolic ratio sensitivity within and across formats. Answering this developmental question will be
pivotal to evaluating claims such as those by Jacob et al. (2012), who hypothesized that ratio magni-
tude processing is a core or native competence. Although several studies suggest that young children
may have this ability (e.g., Duffy et al., 2005; Singer-Freeman & Goswami, 2001; Sophian, 2000;
Spinillo & Bryant, 1991), only one to date has shown this ability among infants (McCrink & Wynn,
2007). Filling this gap would well complement the primate data (e.g. Jacob et al., 2012) in casting ratio
processing as a core competence. Finally we might ask, more broadly, if this ratio perception ability
generalizes to non-visuospatial domains.

5.5. Conclusion

Together, these experiments provide evidence of flexible processing of nonsymbolic fractional
magnitudes in ways similar to the way the ANS processes the magnitude of discrete numerosities.
Just as with the ANS, there is early evidence that this ability is abstract: here it has been demonstrated
with multiple instantiations composed of dots and of circle areas. These cross-format distance effects
indicate that processing of ratio magnitudes bears the same signature that is typically found when
other perceptual stimuli are used in comparison tasks. Similar findings with whole number
comparisons have been widely interpreted as indicating that the processes involved mirror perceptual
judgments (e.g., Dehaene, 1997; Hubbard, Piazza, Pinel, & Dehaene, 2005; Moyer & Landauer, 1967;
Nieder, 2005). By extension, the current data support similar conclusions regarding factional values.

We temper our conclusions with the full acknowledgment that research foregrounding our abilities
to perceive ratios per se is in its infancy. There remain many miles to go before we can draw
conclusions about whether this ratio perception ability is truly on par with the ANS based sensitivity
to nonsymbolic analogs for whole number. Indeed, our findings raise as many questions as they
answer. What is certain, however, is that the study of ratio perception is full of possibilities. One such
possibility is that fractions may in some sense be natural numbers too.
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