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Two  quasi-experiments  examined  mental  organization  of  addition
knowledge  as  a potential  source  of individual  differences  in  under-
standing  math  equivalence  in symbolic  form.  We  hypothesized  that
children  who  mentally  organize  addition  knowledge  around  con-
ceptually  related  groupings  would  have  better  understanding  of
math  equivalence.  In Quasi-experiment  1, we  assessed  101 second
and  third  grade  students’  mental  organization  of  addition  knowl-
edge  based  on  their  use  of decomposition  strategies  to solve  addi-
tion  problems  (e.g.,  3  +  4  =  3  +  3  +  1  =  6  +  1  =  7).  In  Quasi-experiment
2,  we  assessed  94  second  grade  students’  mental  organization  based
on  their  ability  to generate  a set  of  equations  equal  to  a target
value. In  both  quasi-experiments,  children  whose  mental  organi-
zation  better  reflected  conceptually  related  groupings  exhibited
better  understanding  of  math  equivalence.  Results  thus  support  the
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hypothesis  that  mental  organization  of addition  knowledge  into
conceptually  related  groupings  based  on  equivalent  values  may
influence  understanding  of  math  equivalence  in symbolic  form.

© 2014  Elsevier  Inc.  All  rights  reserved.

1. Introduction

Although many developmental psychologists seek to identify commonalities in children’s develop-
ment, studying individual differences (Cronbach, 1957; Underwood, 1975) may  provide insight into
mechanisms of typical development (Hughes et al., 2005; Nelson, 1981) and inspire interventions that
facilitate learning in reading (Blachman, Tangel, Ball, Black, & McGraw, 1999; Shaywitz et al., 2004) and
mathematics (Booth & Siegler, 2006; Ramani & Siegler, 2008). Here, we  examine a source of individual
differences in children’s understanding of math equivalence.

1.1. Mathematical equivalence

Mathematical equivalence, commonly symbolized by the equal sign (=), is the relation between
two interchangeable quantities (Kieran, 1981). Understanding math equivalence in symbolic form
not only involves understanding the meaning of the equal sign, but also encoding math equations in
their entirety, correctly identifying an equation’s two “sides,” and noticing relations within equations
(Jacobs, Franke, Carpenter, Levi, & Battey, 2007; Rittle-Johnson & Alibali, 1999). To be concise, we
herein refer to this array of knowledge as “understanding of math equivalence”, although we are
specifically referring to understanding of math equivalence in symbolic form.

Understanding of math equivalence is critical to development of algebraic thinking (Falkner, Levi,
& Carpenter, 1999; Kieran, 1992; Knuth, Stephens, McNeil, & Alibali, 2006). Unfortunately, most U.S.
children have poor understanding of math equivalence (Baroody & Ginsburg, 1983; Behr, Erlwanger,
& Nichols, 1980; Falkner et al., 1999; McNeil, 2008; Perry, 1991). McNeil (2005) found that nearly 80%
of U.S. 7–11-year-olds solve math equivalence problems—problems with operations on both sides of
the equal sign (e.g., 6 + 3 = 4 + )—incorrectly.

1.2. Early learning of arithmetic as a source of difficulty

A growing body of work suggests that difficulties in understanding math equivalence may  be largely
attributable to children’s early learning experiences in mathematics (Baroody & Ginsburg, 1983; Li,
Ding, Capraro, & Capraro, 2008; McNeil, 2008; McNeil, Fyfe, Petersen, Dunwiddie, & Brletic-Shipley,
2011). In the U.S., arithmetic problems are almost always presented in an “operations equals answer”
format (e.g., 3 + 4 = 7), which may  fail to highlight the interchangeable nature of the two  sides (McNeil
et al., 2011; Seo & Ginsburg, 2003; but see Wynroth, 1975, as cited in Baroody & Ginsburg, 1983, for an
atypical curriculum emphasizing relational meanings). As a result, many children come to interpret the
equal sign operationally, as a signal to “give the answer,” rather than relationally, as a signal that both
sides share a common value (Baroody & Ginsburg, 1983; Behr et al., 1980; McNeil & Alibali, 2005a).
Although operational interpretations of the equal sign are valid in some contexts (Seo & Ginsburg,
2003), they are inappropriate and often detrimental in algebraic contexts (Knuth et al., 2006; McNeil,
Rittle-Johnson, Hattikudur, & Petersen, 2010). Consequently, most U.S. elementary school children not
only fail to solve math equivalence problems correctly, but also fail to encode such problems’ features
correctly (McNeil & Alibali, 2004).

However, not all U.S. children exhibit such errors. What is it about the 10–25% of children who
demonstrate understanding of math equivalence that enables them to extract appropriate patterns
from their formal experiences with arithmetic? General competence or math ability alone cannot
explain individual differences in understanding of math equivalence. Computational fluency, grade
level, and age have not been consistently correlated with understanding of math equivalence in 7-
to 11-year-olds. Some studies report no associations (Carpenter, Levi, & Farnsworth, 2000; McNeil &
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Alibali, 2005b; McNeil et al., 2012; Rittle-Johnson & Alibali, 1999) and others a U-shaped (Baroody
& Ginsburg, 1983; McNeil, 2007, 2008) or positive association (Rittle-Johnson, Matthews, Taylor, &
McEldoon, 2011). Also, cross-cultural comparisons show understanding of math equivalence to relate
more strongly to nationality than general competence (Capraro, Capraro, Ding, & Li, 2007).

Unfortunately, the subpopulation of children who  succeed on math equivalence problems in the
U.S. usually goes unstudied because their success excludes them from intervention studies. However,
studying these individual differences may  illuminate the mechanisms that lead to the development of
a robust understanding of math equivalence and give educators tools for identifying children at risk
for poor learning outcomes.

1.3. Knowledge organization as a source of individual differences

One factor that may  affect the development of children’s understanding of math equivalence is the
way in which children’s addition knowledge is organized. Gelman and Williams (1998) posited that
when children organize their addition knowledge such that they link multiple instantiations of equiv-
alent values (e.g., 2 + 4 = 6 and 1 + 1 + 1 + 1 + 1 + 1 = 6), it facilitates their ability to connect their addition
knowledge to extant mathematical concepts. For example, multiple instantiations of six become linked
and understood as interchangeable. Indeed, the structure of a person’s domain knowledge is often as,
if not more, influential than the content and quantity of that knowledge (Chase & Simon, 1973; Chi &
Ceci, 1987).

Thus, differences in the ways children organize their addition knowledge may  have profound effects
on what they learn from their experiences with arithmetic. This idea is widely accepted by mathemat-
ics educators, who have long advocated helping children organize their knowledge of numbers into
groupings based on equivalent values, particularly during the “New Math” movement of the 1960s and
1970s (Common Core State Standards Initiative, 2010; National Council of Teachers of Mathematics,
2000; School Mathematics Study Group, 1962; but see Kieran, 1980, for an alternative view).

Following this logic, we predicted that children who mentally organize addition knowledge in
conceptually related groupings would have a better understanding of math equivalence than children
who do not. Specifically, children who organize their addition knowledge based on equivalent values
(e.g., 1 + 5, 3 + 3, 1 + 2 + 3, etc.) may  come to understand the interchangeable nature of these facts more
easily. A recent study provided initial support for this prediction (McNeil et al., 2012). Children aged
7–9 were randomly assigned to three conditions. In the experimental condition, children practiced
addition problems grouped by equivalent values (i.e., 1 + 4, 2 + 3, 3 + 2, 4 + 1). In the “iterative” control
condition, children practiced addition problems grouped in a standard iterative fashion (i.e., 2 + 1, 2 + 2,
2 + 3, 2 + 4). In the “no extra practice” control condition, children were given no practice with addition
beyond what they normally received at home or at school. Children in the experimental condition
showed a better understanding of math equivalence than children in the control conditions. McNeil
et al. (2012) suggested that the experimental condition improved understanding of math equivalence
by leading children to have a mental organization of addition knowledge that reflected equivalence.
This conclusion was based, in part, on associationist models of knowledge in which the co-activation
of math facts strengthens connections between them (McCloskey, Harley, & Sokol, 1991).

Although McNeil et al.’s (2012) study was consistent with the hypothesis that mental organization
of addition knowledge by equivalent values supports understanding of math equivalence, it was lack-
ing in two critical respects. First, the published paper did not include any data regarding children’s
mental organization of addition knowledge. Thus, it remains possible that the experimental inter-
vention improved performance via some route other than changing children’s mental organization of
the number facts. For instance, it may  have drawn attention to equivalent expressions in the exter-
nal environment enough to boost understanding of math equivalence. Thus, no published data have
shown that individual differences in mental organization of addition knowledge are associated with
understanding of math equivalence.

Second, the McNeil et al. (2012) study is not able to establish that mental organization of addi-
tion knowledge is indeed associated with understanding of math equivalence in natural contexts. The
experiment demonstrated that organizing addition facts by equivalent values in the external envi-
ronment can improve children’s understanding of math equivalence. However, it cannot speak to
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the question of whether children’s internal organization of addition knowledge relates to children’s
understanding of math equivalence. The present study sought to address this question.

1.4. Present study

In two quasi-experiments, we used an individual differences approach to examine the relation
between behavioral markers of the way children mentally organize their addition knowledge and their
understanding of math equivalence. We  expected children who show evidence of mentally organiz-
ing their addition knowledge into equivalent values to demonstrate a better understanding of math
equivalence than children who do not show evidence of organizing their addition knowledge into such
values. These quasi-experiments assessed children’s mental organization of addition knowledge via
two different methodologies.

In the first quasi-experiment, we investigated the prediction that children who  use decomposition
to solve addition problems would have a better understanding of math equivalence than children who
did not, even when controlling for general proficiency with addition. Decomposition involves translat-
ing a problem into another known form to aid computation, typically breaking larger-valued numbers
into more manageable values. Thus, this strategy integrates addition knowledge and solution proce-
dures to allow solving strategies like “near-doubles” or “making-ten” (Baroody & Tiilikainen, 2003;
Brownell, 1935; Cowan, 2003; Fayol & Thevenot, 2012; Rickard, 2005; Wilkins, Baroody, & Tiilikainen,
2001). For example, given 3 + 4, children may  use a “near-doubles” decomposition strategy, extract
the more easily solved 3 + 3 and simply add 1 to the result (Brownell & Chazal, 1935; Folsom, 1975;
Rathmell, 1978; Siegler, 1987). Importantly, decomposition requires that knowledge be organized in
a manner that allows one to access multiple equivalent representations of a given value. In order to
decompose 4 into 3 + 1 (or 2 + 2, or 7 − 3), some mental connection between these equivalent repre-
sentations must exist. It therefore seems reasonable that children who use a decomposition strategy
are more likely to have knowledge organized around equivalent values than children who do not.

In the second quasi-experiment, we investigated the prediction that proficiency at generating sets
of different equations equal to a target value relates to understanding of math equivalence. As with
the decomposition strategy, in order to quickly and efficiently generate multiple equivalent repre-
sentations (e.g., ‘8’ ↔ ‘7 + 1’, ‘4 + 4’, ‘10 − 2’, and so forth), some connection between representations
must exist in memory (McCloskey et al., 1991). Children who can generate more equations that are
equal to a requested value should therefore be more likely to have memory structures organized in
conceptually related groupings than children who are less proficient at this task.

2. Quasi-experiment 1

2.1. Method

2.1.1. Participants
Participants were 101 children, ages 7–10; M age = 8.4, 56 girls. The group was 59% white, 27%

African American or black, 10% Hispanic or Latino, 2% Asian, and 2% multiethnic. Most children (86%)
were in grades 2–3 and between the ages of 7.5 and 9.5. (Others were between the ages of 7.0–7.5 and
9.6–10.5.) Age data were missing for 5 children, who were excluded from analyses that included age
as a covariate. Conclusions were unchanged from analyses in which these children were included and
age was not used as a covariate. Children were recruited from a diverse range of public and private
elementary schools in a mid-sized city in the Midwestern United States. Approximately 50% received
free or reduced price lunch. Each participant also served as a non-intervention control in one of three
different studies on math equivalence (Chesney, McNeil, Petersen, & Dunwiddie, 2012; McNeil et al.,
2012, 2011).

2.1.2. Procedure
Children participated individually in a 30-minute session. They completed a three-component

measure of understanding of math equivalence followed by an addition strategy assessment.
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2.1.3. Measures of understanding of math equivalence
All participants completed McNeil et al.’s (2011) three-component measure of understanding of

math equivalence. The three components are: (a) equation solving, (b) equation encoding, and (c)
defining the equal sign. According to McNeil and Alibali (2005b), these three components represent
three distinct, but theoretically related constructs involved in children’s understanding of math equiv-
alence. We  established inter-rater reliability on each component by having a second coder code the
responses of 20% of participants.

To assess equation solving,  children were videotaped as they solved and explained four math equiva-
lence problems (1 + 5 = — + 2; 7 + 2 + 4 = — + 4; 2 + 7 = 6 + —; 3 + 5 + 6 = 3 + —). An experimenter placed each
equation on an easel and said, “Try to solve the problem as best as you can, and then write the number
that goes in the blank.” After children did so, the experimenter asked, “Can you tell me  how you got
x?” (where x denotes the child’s given answer).

Strategies were coded as correct or incorrect based on a system used in previous research (McNeil
& Alibali, 2004; Perry, Church, & Goldin-Meadow, 1988). For most problems, correctness of the strat-
egy could be inferred from the response itself (e.g., for the problem 3 + 5 + 6 = 3 + —, a response of 11
indicated a correct strategy). Ambiguous responses were coded based on children’s verbal explanation
(e.g., a response of 9 to 3 + 5 + 6 = 3 + —, was coded as incorrect if the child’s verbal explanation was  “I
added 3 plus 5” but “correct” if the explanation was  “I added 5 plus 6”). Agreement between coders
on whether or not a given strategy was correct was 100%.

To assess equation encoding, children were videotaped as they reconstructed four math equivalence
problems (7 + 1 = — + 6, 3 + 5 + 4 = — + 4, 4 + 5 = 3 + —, 2 + 3 + 6 = 2 + —) after viewing each for 5 s (Chase &
Simon, 1973; Siegler, 1976). The experimenter told children that they did not have to solve the prob-
lems, but rather that they needed only to write exactly what they saw after the experimenter displayed
the problem. Encoding performance was coded as correct or incorrect based on a system used in pre-
vious research (McNeil & Alibali, 2004; Rittle-Johnson & Alibali, 1999). Often, children erroneously
converted problems to a traditional “operations equals answer” format (e.g., reconstructing 4 + 5 = 3 + —

as “4 + 5 + 3 = —” or “4 + 5 = 3”). Agreement between coders on whether or not a reconstruction was
correct was 100%.

To assess defining the equal sign, children were videotaped as they responded to a set of questions
about the equal sign. The experimenter pointed to an equal sign presented alone on a piece of paper
and asked: (1) “What is the name of this math symbol?” (2) “What does this math symbol mean?”
and (3) “Can it mean anything else?” (Baroody & Ginsburg, 1983; Behr et al., 1980; Knuth et al., 2006).
Children’s responses were categorized according to a system used in previous research (McNeil &
Alibali, 2005a, 2005b). We  were specifically interested in whether or not children defined the equal
sign relationally as a symbol of math equivalence (e.g., “two amounts are the same”, “the same as”, “it
means something is balanced”). Participants were coded as giving a relational definition of the equal
sign if they gave a relational response to either question #2 or #3 above. Agreement between coders
on whether or not a definition was relational was 100%.

2.1.4. Addition strategy assessment
Children were videotaped as they solved a set of 14 simple addition problems. Problems were pre-

sented one at a time on a computer screen. For each trial, a fixation point appeared in the center of
the screen followed by the prompts “ready,” “set,” and “go,” displayed for 1 s each. The two  addends
were then presented on the screen without an equal sign (e.g., 9 + 8), and they remained on the screen
until the child said his or her answer aloud. Reaction time (stimulus onset to verbal response) was
recorded by the computer. After each trial, children were asked, “Can you tell me  how you got that
answer?” Children’s strategies (following Geary, Bow-Thomas, Liu, & Siegler, 1996) were categorized
as: (a) finger counting—child (when explaining how he or she arrived at the response) indicated using
or was observed using his or her fingers to keep track of counts during problem solving, (b) verbal
counting—child was observed counting aloud or indicated that he or she counted silently or softly dur-
ing problem solving, (c) retrieval—child showed no evidence of finger counting or verbal counting and
indicated that he or she “remembered” or “knew” the answer, or (d) decomposition—child indicated that
he or she used a step-wise process involving a familiar addition fact (e.g., ten-based: 9 + 8 = 10 + 7 = 17,
tie-based: 7 + 8 = 7 + 7 + 1 = 14 + 1 = 15) to derive the response. Children gave responses on over 99%
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Table 1
Correlations of raw scores on all measures in Quasi-experiment 1.

Decomposition
use

Equation
solving

Equation
encoding

Defining
the equal
sign

Addition
performance

Reaction
time

Number of
strategies

Solving r = .24*

Encoding r = .30** r = .44***

Defining r = .16 r = .27** r = .33***

Addition r = .24* r = .24* r = .23* r = .05
RT  r = −.27** r = −.21* r = −.27** r = −.09 r = −.60***

Strategies r = .56*** r = −.15 r = .21* r = .08 r = .18+ r = −.33***

Age (N = 97) r = −.04 r = .08 r = .28** r = .17 r = .14 r = −.15 r = .03

+ p < .1.
* p < .05.

** p < .01.
*** p < .001.

N = 101 unless otherwise noted.

of the 14 trials, and all but 4 responses were codeable as uniquely belonging to one of these cat-
egories. Agreement between coders was  89% for categorizing children’s strategies into one of the
categories above; most of the disagreements occurred on strategies that were difficult to identify as
finger counting versus verbal counting.

2.2. Results

2.2.1. Understanding of math equivalence
Consistent with previous research, children’s performance was relatively poor. On average, children

solved 0.58 (SD = 1.28) math equivalence problems correctly (of 4) and encoded 0.88 (SD = 1.07) math
equivalence problems correctly (of 4). Only 9% of children provided a relational definition of the equal
sign.

Because equation solving, equation encoding, and defining the equal sign are considered to be
related components of children’s understanding of math equivalence (McNeil & Alibali, 2005b), scores
on the measures should be correlated with one another, and this was  the case: equation solving
and equation encoding, r = .44, p < .001; equation solving and defining the equal sign, r = .27, p = .007;
equation encoding and defining the equal sign, r = .33, p = .001. Such correlations are consistent with
previous research (McNeil & Alibali, 2004, 2005b; McNeil et al., 2011; Rittle-Johnson & Alibali, 1999)
and provide some evidence of construct validity (Cronbach & Meehl, 1955). Correlations between raw
scores on all measures are presented in Table 1.

2.2.2. Addition strategy assessment
Accuracy on the addition strategy assessment was  near ceiling. On average, children solved

13.00 (SD = 1.36) simple addition problems correctly (of 14), and their response time (RT) was 5.64 s
(SD = 2.71) per problem. Verbal counting was the most common solving strategy (35.5% of the trials),
then finger counting (31.9%), retrieval (18.8%), and decomposition (13.8%).

2.2.3. Association between use of decomposition and understanding of math equivalence
Use of decomposition was relatively uncommon (13.8% of trials), and the data showed significant

deviation from normality (Shapiro–Wilk, p < .001), with 58% of children never using decomposition.
Thus, we analyzed the data by categorizing children into one of two groups: those who used decom-
position at least once (n = 42), and those who did not (n = 59). Table 2 shows performance on each of
the measures of understanding of math equivalence by these two  decomposition groups. Because the
pattern was similar for all three measures, we used a composite measure of math equivalence (McNeil
et al., 2011; Rittle-Johnson & Alibali, 1999) for efficient presentation (Cohen, 1990). To take advan-
tage of performance gradations while ensuring all three tasks were given equal weight, we summed
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Table 2
Performance on each of the measures of understanding of math equivalence by decomposition use in Quasi-experiment 1.

Measure Decomposition in
repertoire

Decomposition
not in repertoire

Equation solving (M out of 4 [SD]) 0.95 (1.47) 0.32 (1.07)
Equation encoding (M out of 4 [SD]) 1.26 (1.17) 0.61 (0.91)
Defining the equal sign (% who  defined relationally) 14 5
Composite understanding (M sum of z-scores on the three measures) 0.83 (2.53) −0.59 (1.83)

z-scores from each task to create the composite score. Scores on the composite measure ranged from
−1.59 to 7.82 (M = 0.00, SD = 2.25).

We  performed an analysis of covariance (ANCOVA) with decomposition use as the independent
variable, with children’s age and both accuracy and RT on the simple addition problems as covariates,
and with score on the composite measure of understanding of math equivalence as the dependent mea-
sure. As predicted, there was a significant effect of decomposition use, F(1, 92) = 6.38, p = .013, �2 = .065.
Children who had decomposition in their strategy repertoires exhibited a better understanding of math
equivalence (M = 0.83, SD = 2.53) than did children who did not (M = −0.59, SD = 1.83), Cohen’s d = .66.
The association seemed to be due to use of decomposition per se, as neither accuracy (p = .60) nor RT
(p = .36) on the simple addition problems predicted understanding of math equivalence. Age correlated
positively with understanding of math equivalence: F(1, 92) = 5.23, p = .024, �2 = .05, b = 0.72, SE = 0.32,
but the effect of decomposition use was maintained after controlling for age, Cohen’s d = .63.

As scores were not normally distributed (Shapiro–Wilk, p < .001), we also performed a nonpara-
metric analysis. We  used binomial logistic regression to predict the log of the odds of scoring in the
top half of the distribution (median split) on the composite measure of understanding of math equiv-
alence, with decomposition use as the predictor and again controlling for children’s age and for both
accuracy and RT on the simple addition problems (Agresti, 1996). Results were consistent with the
ANCOVA. The model estimated that the odds of scoring in the top half of the distribution on the mea-
sure were 2.87 times higher for children who had decomposition in their repertoires than for those
who did not (30 of 42 [71%] versus 25 of 59 [42%]),  ̌ = 1.05, SE = 0.47, Wald = 5.09, p = .02. Neither accu-
racy (p = .37) nor RT (p = .70) on the simple addition problems was  associated with understanding of
math equivalence. Age was marginally associated with understanding of math equivalence  ̌ = 0.61,
SE = 0.34, Wald = 3.27, p = .070.

2.2.4. Does use of other addition strategies predict understanding of math equivalence?
To determine if the observed effects were specific to the decomposition strategy, we repeated

the parametric analyses reported above for each of the remaining strategies (verbal counting, finger
counting, and retrieval). We  found no evidence that the presence of these other strategies in a child’s
repertoire predicted understanding of math equivalence: verbal counting F(1, 92) = 0.04, p = .84; finger
counting F(1, 92) = 1.04, p = .31; retrieval F(1, 92) = 0.76, p = .38. This suggests use of decomposition is
unique in predicting children’s understanding of math equivalence.

2.2.5. Does decomposition predict understanding when controlling for strategy variability?
Children who had decomposition in their strategy repertoires used a wider variety of strategies

on the simple addition problems than did children who  did not. An analysis of variance (ANOVA)
with decomposition use as the independent variable, and number of strategies (of 4) in a child’s
repertoire as the dependent measure found a statistically significant effect of decomposition group,
F(1, 99) = 46.00, p < 001, �2 = .32. Children who had decomposition in their strategy repertoire used
more strategies (M = 3.17, SD = 0.82) on the simple addition problems than did children who  did not
have decomposition in their repertoire (M = 2.12, SD = 0.72), Cohen’s d = 1.37.

Because previous studies have documented relations between strategy variability and learning or
performance, it is important to examine if the association between decomposition use and under-
standing of math equivalence holds when controlling for strategy variability. Thus, we repeated the
original ANCOVA with decomposition group as the independent variable, with children’s age and



D.L. Chesney et al. / Cognitive Development 30 (2014) 30–46 37

both accuracy and RT on the simple addition problems as covariates, and with score on the composite
measure of understanding of math equivalence as the dependent measure, but included number of
strategies in the children’s repertoire as an additional covariate. Consistent with the previous ANCOVA,
there was a statistically significant effect of decomposition use, F(1, 91) = 4.89, p = .03, �2 = .05. None
of the covariates were significant (accuracy p = .61, RT p = .35, and number of strategies in repertoire
p = .87) with the exception of age, F(1, 91) = 5.20, p = .02, �2 = .05, b = 0.72, SE = 0.32. These results sug-
gest that children’s decomposition use predicts their understanding of math equivalence and that this
effect is not being driven by greater strategy variability.

2.3. Discussion

Children who used a decomposition strategy to solve addition problems scored higher on a com-
posite measure of understanding of math equivalence than children who  did not, even after controlling
for other markers of addition proficiency and general competence (age, accuracy, reaction time, and
strategy variability). As children who use the decomposition strategy show evidence of retrieving at
least some addition knowledge in groups based on equivalent values (e.g., 3 + 4, 3 + 3 + 1), these results
are consistent with our hypothesis that children who  mentally organized their addition knowledge
by common value would demonstrate better understanding of math equivalence.

However, there are at least two reasons to be cautious of this interpretation. First, while it is logical
that use of decomposition is facilitated by mental organization of addition knowledge by equivalent
values, the test of whether such mental organization is present is only indirect.

Decomposition use might also rely on an understanding that particular numbers and/or expres-
sions can be substituted for one another. Although children’s knowledge of which numbers and/or
expressions are equal to one another says nothing per se about their understanding of the symbols
used to denote this relation (i.e., the equal sign; Rittle-Johnson & Alibali, 1999), recent research indi-
cates understanding of substitution is an important component of equal sign understanding (Jones,
Inglis, Gilmore, & Dowens, 2012). Thus, it remains possible that decomposition use is simply another
way to measure understanding of math equivalence.

Second, use of decomposition was relatively rare in this sample. Over half of the sample never
used it at all, and nearly half of those who used it did so on less than a quarter of the trials. Only
three participants used it on at least three quarters of the trials. We have suggested that the mere
presence of decomposition in a child’s repertoire provides evidence that the child has organized at
least some of his/her addition knowledge by equivalent values. However, we have not assumed that a
greater use of decomposition necessarily indicates greater levels of mental organization. Indeed, past
work suggests that the availability of decomposition as a strategy does not automatically entail its
use, particularly when other, potentially less effortful strategies— such as direct retrieval—are also
available (see Fayol & Thevenot, 2012 for a discussion of strategy variability in supposed experts). To
elaborate, decomposition requires organized knowledge of related arithmetic facts. Thus, knowledge
of more arithmetic facts would increase the proportion of problems on which one could use decompo-
sition, provided that that knowledge is organized by equivalent values. However, knowledge of more
arithmetic facts would also increase the availability of the retrieval strategy, which does not entail
any particular mental organization. Consistent with this view, our results showed a strong relation
between use of decomposition and understanding of math equivalence, although they provided no
indication that frequency of decomposition use mattered. However, the data were not sufficiently
well-distributed to test if frequency actually mattered.

To address concerns about the appropriateness of decomposition as a metric of mental organization,
we conducted a second quasi-experiment in which we  used a different method to assess children’s
mental organization of addition knowledge—one that focused on recall more directly, rather than on
decomposition.

3. Quasi-experiment 2

In Quasi-experiment 2, we sought to replicate the finding that the mental organization of addi-
tion knowledge is associated with understanding of math equivalence. However, we assessed mental
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organization by children’s ability to generate equations equal to a target value. The ability to gener-
ate equivalent equations should benefit from mental organization that links mathematical statements
with equivalent values. We  predicted that proficiency at generating equations with equal values would
be associated with higher scores on our assessment of understanding of math equivalence, even after
controlling for general addition proficiency.

3.1. Method

3.1.1. Participants
The quasi-experiment was conducted in second grade classrooms at two  public and two  private

schools in a mid-sized city in the Midwestern US and one private school in a large city in the Eastern
US. Students in these classes were part of a larger study designed to examine the effects of differ-
ent types of arithmetic practice on children’s understanding of math equivalence. Children solved
problems in arithmetic practice workbooks 15 min  per day, twice a week, for 12 weeks, during their
regular mathematics period. The specific problems of interest for the present study were contained
in workbooks that were randomly assigned to approximately half of the children in each classroom
(the remaining children completed different workbooks not relevant to testing our current hypoth-
esis). Ninety-four children (50 girls) completed all the problems of interest. Five additional children
were excluded because they were absent on one or more days of testing. Based on the composition
of the participating schools, the racial/ethnic makeup of the sample was approximately 48% white,
23% African American or black, 19% Hispanic or Latino, 2% Asian, and 8% other. Approximately 50%
received free or reduced price lunch.

3.1.2. Measure of proficiency at generating a set of equations equal to a target value
Children completed a series of problems designed to test their ability to generate a set of equations

equal to a target value. Each problem displayed a cartoon character (“Mary” or “Juan”) along with a
statement indicating that she or he “likes” a particular target number. An equation board containing
2–4 blank slots was presented below the character. The children’s goal was  to fill the empty equation
board with equations that the character would “like.” (See Fig. 1.)

Children completed 20 of these empty equation board problems across two sets of worksheets
presented 1–2 weeks apart. There were a total of 72 blank equation board slots that children could
fill with equations. Prior to completing each set, children received instructions from their classroom
teacher and then worked through a scaffolded example (see Fig. 1). In addition, for each set of work-
sheets the first four equation boards that children completed on their own contained 1 or 2 example
responses to ensure that children understood the task. The goal was to fill in as many blank equation
board slots as possible in 15 min  (∼30 s per blank equation board slot).

The “equation board” worksheets were embedded in the larger arithmetic practice workbook that
children used in their regular mathematics classrooms as part of the larger study. This workbook
provided practice with single-digit addition facts in a variety of formats. Teachers were encouraged
to treat these sessions as any other math practice activity they would assign and to answer children’s
questions accordingly.

Children were given one point for every correct equation or expression they wrote, as long as
it did not exactly replicate an equation or expression written in an earlier slot on the same board.
For example, if a child correctly filled in the first slot in a board with “3 + 4 = 7,” subsequent entries
of “4 + 3 = 7,” “7 = 5 + 2,” and “8 − 1” would each be scored as correct, whereas a duplicate entry of
“3 + 4 = 7” or “3 + 4” would not. We  established inter-rater reliability by having a second coder code
the responses. Agreement between two coders on whether or not a given equation or expression was
correct was 99%. The coders resolved all disagreements through discussion.

3.1.3. Measures of understanding of math equivalence
As in Quasi-experiment 1, children’s understanding of math equivalence was  evaluated using a

three-component measure assessing equation solving, equation encoding, and defining the equal
sign. Minor adjustments were made to the procedure to allow classroom collection of the data,
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Fig. 1. Sample pages from the workbook activities used in Quasi-experiment 2. The left panel shows the partially completed
scaffolded example children completed before filling out equation boards on their own. The right panel shows a worksheet
with  empty equation boards.

noted below. A second coder coded responses of 20% of children to establish inter-rater reliability.
Agreement between coders is reported below for each component.

To assess equation solving,  children completed a paper-and-pencil test consisting of eight
math equivalence problems (5 + 4 = — + 4; 8 + 2 = — + 7; 7 + 2 + 4 = — + 4; 7 + 4 + 6 = — +3; 2 + 6 = 2 + —;
2 + 7 = 6 + —; 3 + 5 + 6 = 3 + ; 6 + 2 + 8 = 4 + —). Children took the test in their regular classroom setting.
Children’s classroom teachers handed out the test and read the instructions aloud. Teachers assured
children that it was okay if they had never seen problems like these before. They told children to
try their best to solve each problem and to give their “best guess” for any problems that seemed too
difficult. As in prior work involving paper-and-pencil assessment of strategy use on these types of
equations (McNeil, 2007), responses were coded as reflecting a correct strategy as long as they were
within ±1 of correct. Agreement between coders on whether or not a given strategy was correct was
99%.

To assess equation encoding, children were asked to reconstruct four math equivalence problems
(4 + 5 = 3 + —; 7 + 1 = — + 6; 2 + 3 + 6 = 2 + —; 3 + 5 + 4 = + 4) using paper and pencil after viewing each for
5 s (Chase & Simon, 1973; Siegler, 1976). Teachers read the following instructions aloud: “I will show
you some math problems one at a time, but this time you don’t have to solve the problems. Instead, you
just have to remember what you see and write it on your paper. So, here’s what we’ll do. I’ll show you
a problem for 5 s. After I hide the problem, I want you to write exactly what you saw. Remember, you
don’t have to solve the problem; you just need to write exactly what you see.” Teachers projected each
equation using an overhead projector and left it visible for 5 s. After the teachers hid each problem,
they said: “OK, write exactly what you saw.” Children’s encoding performance was coded as correct or
incorrect via the same method used in Quasi-experiment 1. Agreement between coders on whether
or not a given reconstruction was correct was 99%.

To assess defining the equal sign, children responded to a set of questions about the equal sign. An
arrow pointed to an equal sign presented alone, and the text read: (1) “What is the name of this math
symbol?” (2) “What does this math symbol mean?” and (3) “Can it mean anything else?” (Baroody
& Ginsburg, 1983; Behr et al., 1980; Knuth et al., 2006). Teachers read each question aloud to the
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Table 3
Performance on each of the measures of understanding of math equivalence for children with high versus low proficiency at
generating equations equal to a target value in Quasi-experiment 2.

Measure High proficiency Low proficiency

Equation solving (M out of 8 [SD]) 2.33 (3.13) 2.02 (2.82)
Equation encoding (M out of 4 [SD]) 1.88 (1.21) 1.00 (1.12)
Defining the equal sign (% who  defined relationally) 23 11
Composite understanding (M sum of z-scores on the three measures) 0.55 (2.02) −0.58 (1.85)

Note. Proficiency at generating equations equal to a target value was  median split for illustrative purposes in this table.

class, and children wrote their responses immediately after the question was read. Responses were
categorized via the same method used in Quasi-experiment 1. Agreement between coders on whether
or not a given definition was relational was 100%.

3.1.4. Measure of general addition proficiency
Children completed Geary et al.’s (1996) paper-and-pencil addition test. It contained all pair-wise

combinations of the numbers 1–9, for a total of 81 addition problems, presented in a random order.
The goal was to solve as many problems as possible in 1 min.

3.1.5. Procedure
The measures for this quasi-experiment were administered over a 3–5 week period in late fall.

Children’s teachers administered all measures in the regular mathematics classroom setting. Tea-
chers were given some flexibility regarding the exact dates and times of administration to suit their
classroom schedules; however, all children completed the measures according to the same general
timetable. First, they completed the initial set of worksheets assessing proficiency at generating equa-
tions equal to target values. Then, approximately 1–2 weeks later, they completed the second set of
equation generation worksheets. Finally, approximately 1–2 weeks after completing the second set of
worksheets, children completed both the three-component composite measure of understanding of
math equivalence and the measure of general addition proficiency.

3.2. Results

3.2.1. Proficiency at generating equations equal to a target value
Performance on the equation generation worksheets was highly varied. On average, children gener-

ated 53.02 (SD = 22.39, min  = 0, max  = 72) different correct equations to fill the equation boards across
both sets of worksheets (of 72 possible).

3.2.2. Understanding of math equivalence
Children’s understanding of math equivalence was relatively poor. On average, children solved 2.18

(SD = 2.97) math equivalence problems correctly (of 8) and encoded 1.45 (SD = 1.24) math equivalence
problems correctly (of 4). Only 17% of children provided a relational definition of the equal sign.

3.2.3. General addition proficiency
Performance on the paper-and-pencil addition test was highly varied. On average, children solved

14.49 (SD = 6.49, min  = 2, max  = 32) problems correctly in 1 min  (of 81 possible).

3.2.4. Association between proficiency at generating equations equal to a target value and
understanding of math equivalence

Table 3 presents performance on each component of the math equivalence measure for children
who were more and less proficient at generating a set of equations equal to a target value. The effect
was similar across all three components, suggesting it was  appropriate to use a composite measure
of understanding of math equivalence. Scores on the composite measure ranged from −2.35 to 5.07
(M = 0.00, SD = 2.01). Correlations between raw scores on all measures are presented in Table 4.
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Table 4
Correlations of raw scores on all measures in Quasi-experiment 2.

Generating equations Equation solving Equation encoding Defining the equal sign

Solving r = .13
Encoding r = .33** r = .22*

Defining r = .19+ r = .16 r = .13
Addition proficiency r = .37*** r = .06 r = .23* r = .14

+ p < .1.
* p < .05.

** p < .01.
*** p < .001

N = 94.

We  used hierarchical multiple regression to predict children’s scores on the composite measure. In
the first step, we entered scores on the paper-and-pencil addition test to control for general addition
proficiency. There was an association between children’s addition proficiency and their understand-
ing of math equivalence (see Table 5). The more proficient children were with addition, the better
their understanding of math equivalence, b = 0.066, t(92) = 2.10, p = .04. This effect was  in the small-
to-medium range, with general addition proficiency accounting for less than 5% of the variance in
understanding of math equivalence when no other variables were included in the model (correspond-
ing Cohen’s d ≈ .45).

In the second step, we entered the predictor variable of interest into the model: proficiency at
generating equations equal to a target value. This predictor accounted for a significant portion of the
variance in children’s understanding of math equivalence, even when controlling for general addi-
tion proficiency (see Table 5). As hypothesized, the more proficient children were at generating such
equations, the better their understanding of math equivalence, b = 0.025, t(91) = 2.65, p = .01. The effect
was in the medium range, with proficiency at generating equations equal to a target value uniquely
accounting for over 7% of the variance in understanding of math equivalence (corresponding Cohen’s
d ≈ .56). Importantly, when we reversed the steps of the hierarchical regression and entered profi-
ciency at generating equations first, equation generation accounted for 10% of the variance (b = 0.03,
t(92) = 3.26, p = .002, corresponding Cohen’s d ≈ .67) and the association between general addition pro-
ficiency and understanding of math equivalence reported in the previous paragraph was  no longer
significant (R2 change = .01, p = .30). Thus, consistent with Quasi-experiment 1, general addition profi-
ciency was not a robust predictor of understanding of math equivalence, whereas a measure assessing
the organization of addition knowledge was.

Given that scores on the composite measure of understanding of math equivalence were not nor-
mally distributed (Shapiro–Wilk, p < .001), we also performed a nonparametric analysis. We used
binomial logistic regression to predict the log of the odds of scoring in the top half of the distribution
(median split) on the composite measure of understanding of math equivalence, with proficiency at
generating equations as the primary predictor and again controlling for general addition proficiency
(Agresti, 1996). Results were consistent with the original hierarchical multiple regression. As pre-
dicted, children’s likelihood of scoring in the top half of the distribution on the composite measure of
understanding of math equivalence increased as their proficiency at generating equations increased,

Table 5
Predicting scores on the measure of understanding of math equivalence by the number of equations equal to a target value
generated via a stepwise linear regression in Quasi-experiment 2.

Predictor b pr t p R2 change

Step 1 .04 .046
Score on paper-and-pencil addition test 0.066 .21 2.10 .04

Step 2 < .01 .068
Score on paper-and-pencil addition test 0.034 .11 1.04 .30
Number of equations equal to a target value generated 0.025 .27 2.65 .01
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 ̌ = 0.03, z = 2.45, Wald = 6.09, p = .01. The model indicated that the odds of scoring in the top half of the
distribution increase by 81% for every standard deviation increase in equation generation.

3.3. Discussion

Children who were more proficient at generating equations equal to a target value also performed
better on the math equivalence assessment, even after controlling for general addition proficiency.
We suspect that children who are better able to generate such equations tend to mentally organize
addition knowledge by equivalent values. This organization, in turn, may  help children better under-
stand the interchangeable nature of these equivalent values, and understanding this interchangeability
is key to understanding math equivalence. Just as practice with a given addition fact strengthens
associations between a pair of addends and their value (e.g., 4 + 5 activates 9), mentally organizing
addition knowledge based on equivalent values may  strengthen associations between multiple equiv-
alent combinations. For example, 4 + 5 may  come to activate not only the number 9 but also multiple
combinations that equal 9 (e.g., 5 + 4, 3 + 6, 2 + 7). Then, when faced with a math equivalence problem
such as 4 + 5 = — + 6, children who organize their knowledge in this way  may  see 4 + 5 and immediately
activate 3 + 6.

4. General discussion

The present study provides evidence that the organization of children’s addition knowledge may
be an important source of individual differences in children’s understanding of math equivalence. In
Quasi-experiment 1, children who used decomposition when solving addition problems exhibited a
better understanding of math equivalence than children who did not use decomposition, even after
controlling for age, accuracy, reaction time, and strategy variability. In Quasi-experiment 2, children
who were able to generate more different equivalent equations demonstrated a better understanding
of math equivalence than children who generated fewer equivalent equations, even after controlling
for addition proficiency.

These results complement and extend the causal evidence established by McNeil et al. (2012)
in at least two  ways. First, they show that individual differences in children’s addition knowledge
are associated with understanding of math equivalence in symbolic form. Second, they show this
association in children whose only experience with mathematics has been that of a typical U.S. ele-
mentary school student, not just in children who have completed interventions designed to influence
their mental organization of addition knowledge. Moreover, the proxies for mental organization of
addition knowledge predict understanding of math equivalence even when controlling for age and
addition performance, RT, and strategy variability (Quasi-experiment 1), and general addition profi-
ciency (Quasi-experiment 2).

4.1. Potential mechanisms

While our evidence indicates that the mental organization of addition knowledge predicts chil-
dren’s understanding of math equivalence, the mechanisms underlying this effect are less clear.
Gelman and Williams’ (1998) explanation of how the structure of learning environments can structure
the mind offers a plausible mechanism. They argued that with exposure to more structurally redun-
dant examples of domain-relevant exemplars, it becomes increasingly likely that a learner’s mental
structures will become more compatible with the underlying structure of the domain. Unpacking this
theory, we offer speculative accounts of how the organization of addition knowledge might contribute
to understanding of math equivalence.

It may  be that conceptually grouped organization of addition knowledge leads to the co-activation
of multiple interchangeable number combinations when a given stimulus is presented. In this way,
co-activation could help populate a child’s strategy space when faced with difficult or unfamiliar prob-
lems. For instance, when presented with 9 + 3 = 6 + —, a variety of equivalent forms might be activated
that aid success with math equivalence problems (e.g., 6 + 3 + 3 = 6 + —). This co-activation has several
possible consequences.
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One is increased strategy choices. Siegler (1996) has argued cogently that the population of
strategy space is a critical component of cognitive change. As discussed above, organizing math
facts by equivalent values facilitates decomposition strategies. Thus, conceptual organization around
equivalent values may  help drive development of domain knowledge—i.e., understanding of math
equivalence—because it increases children’s strategy options.

In addition, co-activation of equivalent number combinations may  counteract the operational
default problem-solving strategy to “add up all the numbers” (McNeil & Alibali, 2005b). Both decom-
position and equivalent equation generation work in the opposite direction; instead of adding all
the numbers up, they are broken apart and rearranged. This availability of strategies for substituting
multiple terms in place of any given term may  work against an “add all” strategy, both by creating
competition within the strategy space and by challenging its status as a default.

It may  be that the organization of addition knowledge around equivalent groups helps children
to directly extract conceptual knowledge about both number and math equivalence. According to
Gelman and Williams (1998), structural mapping is facilitated when learners are exposed to multiple
examples that vary in their surface details as long as their shared structure maps to the to-be-learned
conceptual domain. Organizing addition knowledge by values fits this description, as each combina-
tion varies in surface appearance but remains equivalent. This interpretation aligns with Chi and Ceci’s
(1987) argument that quantity of knowledge is often not as important as knowledge structure. That is,
content knowledge—and its organization—are not mere adjuncts of cognition, but are constituents of
it. As such, representations of arithmetic knowledge that allow for the integration of factual and con-
ceptual knowledge by supporting multiple concept-based interconnections may  be more conducive
to conceptual development than those based on isolated connections between ordered addend pairs
and their sums (Brownell, 1935; Wilkins et al., 2001).

There are reasons to be cautious when interpreting the present results. First, it is possible that
children initially gain an understanding of math equivalence and only afterwards come to mentally
organize addition knowledge by equivalent values (Canobi, Reeve, & Pattison, 1998). Alternatively,
mental organization and knowledge of math equivalence may  reinforce each other iteratively (Rittle-
Johnson, Siegler, & Alibali, 2001). Further studies are needed to determine if mental organization of
addition knowledge by equivalent values precedes, follows, or develops in concert with understanding
of math equivalence.

Second, we cannot currently measure mental organization of addition knowledge directly; we  can
only infer this structure indirectly. While the use of different behavioral indicators of mental orga-
nization lends strength to our conclusions (Lykken, 1968), we cannot rule out the possibility that
the associations we found are due to their common relation to some unmeasured third factor. This
concern is mitigated somewhat by McNeil et al.’s (2012) experiment, in which a random subset of
children was assigned to an intervention with organized arithmetic practice designed to strengthen
their mental connections between equivalent math facts. Random assignment should have yielded
groups that were roughly equivalent on unmeasured third factors. Thus, it is valid to presume that
the posttest differences in children’s understanding of math equivalence resulted from the interven-
tion (i.e., from the organized arithmetic practice) rather than from inherent differences between the
children. Given the converging lines of evidence from McNeil et al.’s (2012) experiment and both of
the current quasi-experiments, the most parsimonious interpretation of these results is a causal con-
nection between organization of addition knowledge based on equivalent values and understanding
of math equivalence. However, we acknowledge that the available evidence is not definitive.

Third, it remains an open question why some children but not others would come to organize
addition knowledge by equivalent values. One possibility is chance. Random variation in co-exposure
and momentary attention may  leave some children with stronger interconnections between repre-
sentations with equivalent values than others. A second possibility is that these children had different
mathematical experiences than their peers (e.g., math workbooks, computer games, or flashcards
used at home) that enabled them to construct a better understanding of math equivalence. A third
possibility is that there is some intrinsic difference in the general cognitive ability of these children
that facilitated the development of memory structures that interconnect equivalent addition facts
(Geary, Hoard, & Nugent, 2012). Further study is needed to determine which possibility, if any, is the
case.
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In conclusion, our results suggest children who  organize their addition knowledge into group-
ings based on equivalent values construct a better understanding of math equivalence than children
who do not. These findings run counter to Kieran’s (1980) conjecture that emphasizing the equiva-
lence of arithmetic facts in classrooms would lead to poor learning of those facts because children
have poor understanding of equivalence. Instead, our findings bolster the recommendations of math
educators who have endorsed helping children organize their knowledge of numbers and math facts
into groupings based on equivalent values (Common Core State Standards Initiative, 2010; School
Mathematics Study Group, 1962). Emphasizing these interconnections may  improve understanding
of math equivalence in symbolic form without detriment to arithmetic fact learning. Beyond these
practical implications, the present results also provide an illustration of how examining individual
differences can help illuminate the mechanisms involved in mathematical thinking.
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