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Abstract It has been suggested that differences in per-
formance on number-line estimation tasks are indicative
of fundamental differences in people’s underlying repre-
sentations of numerical magnitude. However, we were
able to induce logarithmic-looking performance in adults
for magnitude ranges over which they can typically per-
form linearly by manipulating their familiarity with the
symbolic number formats that we used for the stimuli.
This serves as an existence proof that individuals’ per-
formances on number-line estimation tasks do not neces-
sarily reflect the functional form of their underlying
numerical magnitude representations. Rather, performance
differences may result from symbolic difficulties (i.e.,
number-to-symbol mappings), independently of the un-
derlying functional form. We demonstrated that number-
line estimates that are well fit by logarithmic functions
need not be produced by logarithmic functions. These
findings led us to question the validity of considering
logarithmic-looking performance on number-line estima-
tion tasks as being indicative that magnitudes are being
represented logarithmically, particularly when symbolic
understanding is in question.
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It has become increasingly popular for researchers to interpret
the spacing and precision of responses on number-line estima-
tion tasks, in which people place symbolic numbers (e.g., 74)
on lines anchored by other symbolic numbers (e.g., 0—100), as
being directly indicative of the spacing and precision of the
mental representations of numerical magnitudes referenced by
symbolic numbers. Particularly, changes in task performance
are interpreted as reflecting developmental changes in chil-
dren’s underlying representations of numerical magnitudes
(e.g., Siegler & Booth, 2005; Siegler, Thompson, & Opfer,
2009). According to the “log-to-linear shift” hypothesis, chil-
dren initially rely on logarithmic representations of numerical
magnitude to complete these tasks—representations tied to the
system that allows us to perceive numerosities of dot arrays
without counting. The hypothesis holds that with experience
and education, children develop linear representations of nu-
merical magnitudes that they can apply to this task (Siegler &
Opfer, 2003). Some have claimed that this apparent shift is
evidence that the functional form of number-line estimation
performance reflects that of underlying magnitude representa-
tions (e.g., Dehaene, Izard, Spelke, & Pica, 2008).

However, successful number-line estimation requires more
than simply assigning perceived magnitudes to the appropriate
spatial line positions. One must translate between symbolic
numbers and their referenced magnitudes before translating
the magnitudes to spatial line lengths. Missteps in translating
between symbolic numbers and numerical magnitudes may
alter the shapes of estimation patterns, independently of the
underlying functional form of those magnitudes’ representa-
tions. This is particularly likely to occur in cases in which the
mappings between symbolic numbers and the magnitudes they
are meant to represent are not strongly established (Barth &
Paladino, 2011; Ebersbach, Luwel, Frick, Onghena, &
Verschaffel, 2008).
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We must bear in mind that such mistranslations can affect
performance, or we risk conflating effects of basal magni-
tude representation with those due to symbol/referent map-
ping. This issue is especially important when evaluating the
log-to-linear shift hypothesis. A child must recognize a
numeral before placing it on a number line with any consis-
tency. Consider a young child who cannot correctly name
the numeral 74. There is no a priori reason why this child
would link the symbol “74” to a definite magnitude.
Research has shown that many kindergartners cannot prop-
erly label written numerals above 10 (e.g., Clarke & Shinn,
2004; Wright, 1991). This poses a problem for interpreting
such children’s performance on number-line estimation
tasks ranging from 0 to 100. It is reasonable to expect
disorganized behavior when children encounter number
symbols without clear referents. This could lead to flat
performance functions in unfamiliar ranges.

Some researchers (e.g., Ebersbach et al., 2008; Moeller,
Pixner, Kaufmann, & Nuerk, 2009) have suggested that such
situations could yield bilinear performance patterns resem-
bling logarithmic functions. For example, children’s perfor-
mance may appear logarithmic if they perform linearly on the
range that they understand, but heap unfamiliar symbols into a
general class of “big” numbers, placing them without concern
for specific value on the “big” end of the line. This predicts
excessively steep slopes in the known range and overly flat
slopes in the unknown range. Such bilinear performance
yields functions that are reasonably well fit by logarithmic
curves. Under this hypothesis, logarithmic-looking perfor-
mance is due to symbol-mapping difficulties, not to reliance
on logarithmic magnitude representations. Stated alternative-
ly, behavior that is well fit by logarithmic functions is not
necessarily produced by logarithmic functions.

Several studies have shown that young children perform
linearly within lower number ranges and curvilinearly on tasks
including higher number ranges (e.g., Siegler & Booth, 2004,
2005), which young children are likely to have poorly mapped
(see Clarke & Shinn, 2004; Wright, 1991). Notably, Barth and
Paladino (2011) suggested that kindergartners’ curvature on 0—
100 number lines results from symbolic uncertainty inducing
underestimation of high anchor values—not from underlying
magnitude spacing. However, no work has experimentally
manipulated the interpretations of symbolic numbers used in
line estimation tasks, leaving any possible effects of age-related
symbolic uncertainty to speculation. Indeed, we know of no
studies investigating how symbol-to-magnitude mismappings
affect number-line estimation.

We believe that it is important to address this gap in the
literature, particularly given prior findings that providing incor-
rect information about specific array cardinalities can system-
atically alter participants’ estimates of other nonsymbolic
numerosities (Izard & Dehaene, 2008). We sought to experi-
mentally test the hypothesis that symbol-to-magnitude

mismapping can yield logarithmic-looking performance on line
estimation tasks, even when participants clearly can represent
numbers linearly in the tested range. We used different sym-
bolic number formats to manipulate adult participants’ map-
pings between to-be-placed number symbols and numerical
magnitudes. This let us test specific predictions about the
resulting functional forms of their performance on number-
line estimation tasks. We used formally educated adult partic-
ipants to ensure that any observed effects resulted from sym-
bolic factors, as opposed to hypothesized differences in basal
magnitude representation that might confound children’s
performance.

Experiment 1

Adults completed several number-line estimation tasks, some
using unfamiliar notation to induce participants to mismap
numeric symbols to magnitudes. We hypothesized that their
performances would be linear with slopes reflecting the ratio
between the presumed and actual symbol magnitudes, except
when participants thought that the stimuli exceeded the lines’
upper anchors. For these unexpectedly high stimuli, we pre-
dicted that participants would place responses together near
the upper anchor, yielding a relatively flat slope approaching
zero. We predicted that when analyzed together, estimates for
stimuli above and below the assumed high anchor value
would resemble a logarithmic curve, despite not being pro-
duced by a logarithmic function. Performance was predicted
to become more accurate when assumptions about the upper
anchor values were corrected with a calibration slide.

Method

Participants

A group of 68 University of Notre Dame undergraduates (29
female, 39 male; ages 18-22 years) participated for course
credit. Two participants were dropped (for noncompliance
or experimenter error), leaving a final analytic sample of 66.

Materials

The participants completed the experiment individually. All
stimuli were presented on iMac 5.1 computers using
Superlab 4 software (Cedrus Corporation, 2007).

Stimuli
Each task used 11 different numerical stimuli, presented
twice each. These were adapted from Siegler and Opfer’s

(2003) 0-1,000 number-line stimuli by multiplying values
by a scaling factor of 10'°. The stimuli were presented in
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either decimal (64, 128, 192, 576, 800, 2,272, 4,960, 7,360,
12,480, 18,390, 25,920) or exponential (.002 x 10*,
004 x 10*%, .006 x 10*°, .018 x 107, .025 x 10*°,
072 x 10*%, 157 x 10*°, 233 x 107, .395 x 10*°,
582 x 10*°, .820 x 10*°) notation. Each trial involved
a 147-mm horizontal line with anchor values printed
below the line’s left endpoint (always 0) and right
endpoint (in exponential notation, .999 x 10*°, or dec-
imal notation, 31,623). The to-be-estimated numbers
appeared ~15 mm above the center of the line.

Design and procedure

Participants were assigned to groups (Group 1, n = 34;
Group 2, n = 32) that completed different experimental
tasks, but the same control tasks (described below). In all
tasks, participants indicated estimates via mouse click. The
trials timed out after 15 s.

Group 1: Decimal stimuli with exponential anchors (Dec—
Exp) in experimental tasks We designed this task to create a
situation in which naive adults incorrectly underestimate
upper anchor values. The upper anchor was symbolized as
999 x 10*>. Pilot participants never correctly assessed this
value as 31,623. Instead, most rounded to .999 x 10*
(~10,000), underestimating the anchor by a factor of 3.16.
The to-be-placed stimuli, in contrast, were presented in
standard decimal format, which should be well understood.
Participants were expected to initially overestimate the po-
sitions of stimuli relative to their correct positions by the
ratio of the true to the assumed anchor magnitudes
(31,623:10,000), performing linearly with a slope
approaching 3.16 for stimuli below the assumed upper an-
chor value (typically 10,000). We further predicted that
when confronted with stimuli greater than this presumed
value, participants would compress estimates into a small
space at the right end of the line.

Group 2: Exponential stimuli with decimal anchors (Exp—
Dec) in experimental tasks We designed this task to create a
situation in which naive participants would underestimate
the ratio of the stimuli to the upper anchor. This reversed the
setup of the Dec—Exp manipulation, such that we expected the
stimuli, rather than the upper anchor, to be underestimated by
a factor of 1/3.16 (about 0.32). We predicted that this
would yield a linear performance pattern with a slope
approaching 0.32 over the entire stimulus range, as no
values would violate expectations by exceeding the an-
chor value.

Both groups: Control tasks Control tasks displayed both
stimuli and anchors in the same format, either decimal

(Dec—Dec) or exponential (Exp—Exp).
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Stimulus order For the Dec—Exp tasks, stimuli were
presented in three blocks. First, in the Jow block, stimuli
of values under 10,000 were presented in random order.
Next, in the high block, stimuli over 10,000 were presented
in random order. Finally, in the mixed block, the entire range
of stimuli were presented in random order. We used this
low—high-mixed sequence out of concern that, when
confronted with stimuli that exceeded their evaluation of
the upper anchor, participants might recalibrate that evalua-
tion upward to be consistent with their assumptions that all
stimuli should be less than the upper anchor. This sequence
was also followed for the control tasks, to confirm that the
ordering itself did not yield bilinear performance (it did not;
see below). For the Exp—Dec tasks, we had no expectation
that the stimuli would be perceived as greater than the
anchor. Thus, the stimuli were simply presented twice in
random order, with each stimulus being presented at least
once before any were repeated.

Task order Each participant completed all tasks in an hour-
long session that also included other estimation tasks
not discussed in this report. The participants completed
their assigned experimental tasks (Group 1, Dec—Exp;
Group 2, Exp—Dec) twice, once before (precalibration)
and once after (postcalibration) viewing a calibration
slide indicating which stimulus corresponded to the
midpoint of the line (Fig. 1). Thus, the task order acted
as an experimental condition. We predicted that partic-
ipants would use the calibration slide to form an accu-
rate mapping of the exponential notation, leading to
linear performance with slopes approaching 1.0 in the
postcalibration experimental tasks. Group 1 completed
the Dec—Dec control task before the experimental tasks
and the Exp—Exp control after, whereas Group 2 re-
versed this order.

Results and discussion
Analyses

We used Booth and Siegler’s (2006) method for all eval-
uations of differences in fit among linear, logarithmic, and
bilinear models: We compared the absolute values of the
differences between the group’s median estimates and the
values predicted by the best-fitting functions via paired-
samples ¢ tests. Because three tests were needed to com-
pare these model fits, we used a Bonferroni correction,
requiring p < .017 for statistical significance. When pos-
sible, median estimates from the first and second presen-
tations of the stimuli for a given task were included as
separate data points. The results are summarized in Table 1
and Fig. 1.
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Fig. 1 Experiment 1: Median estimates and best-fitting linear and logarithmic functions for pre- and postcalibration Dec—Exp and Exp—Dec tasks,

presented with the tasks’ calibration lines

Control tasks

Linear functions with slopes near 1.0 accounted for at least
99 % of the variance in each control condition. Responses
for both the Dec—Dec and Exp—Exp control tasks were
better fit by linear than by logarithmic functions, even
though blocks used the low—high-mixed task order.

Dec—Exp tasks

We separately analyzed the patterns from first and second
presentations of stimuli in the precalibration Dec—Exp blocks
(the low and high blocks vs. the mixed block). As predicted,
there was a stark contrast in performance for stimuli below
10,000 and above 10,000, not only in the low and high blocks,
but also in the mixed block. For stimuli below 10,000, the
aggregate performance was linear with a slope well above 1.0,
approaching the predicted slope of 3.16 (low and high, 2.82;
mixed, 2.56). In contrast, performance on values over 10,000
yielded very shallow slopes (low and high, 0.20; mixed, 0.39).

When considering the full range of values, the resulting
function took on the predicted curvilinear appearance.
Although there was no statistically significant difference be-
tween the fits of the linear and logarithmic functions, the
absolute value of the variance explained was greater for the
logarithmic than for the linear model. As predicted, both

models were outperformed by a bilinear model separately
fitting values above and below 10,000 (R%; > .99). Still,
despite the clear bilinear nature of the participants’ perfor-
mance, the best-fitting logarithmic function had an R* of over
.9. Similar logarithmic fits in children’s performance functions
have been considered evidence that children use logarithmic
basal magnitude representations (Siegler & Booth, 2004). In
contrast, the performance on the Dec—Exp task after the
presentation of the calibration slide was clearly linear
and not logarithmic. With the presentation of a single
slide, performance changed dramatically. Patterns in the
individual data mirrored this aggregate tendency (see the
online supplement for individual analyses).

Exp—Dec tasks

Performance on the precalibration Exp—Dec task was well fit
by a linear function, although the linear fit was not signifi-
cantly better than the logarithmic fit (Rzlin = .87 vs. Rzlug =
.80). Furthermore, participants typically placed all stimuli on
the leftward third of the line, yielding a slope of 0.35 (SE =
0.03). This was close to the slope of 0.32 that we hypothesized
would result if participants thought that 10*° equaled 10,000.
Performance changed dramatically following the presentation
of the calibration slide. After calibration, performance was
clearly better fit by a linear function. Furthermore, the slope
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Table 1 Linear, logarithmic, and bilinear fit information for the estimation tasks in Experiment 1

Task Linear R? Log R? Bilinear R Best-Fitting Function ¢ Tests (Cohen’s d)
Slope (SE) Beta (SE) Slope, <10,000 (SE); Log vs. Linear Linear vs. Log vs.
Slope, >10,000 (SE) Bilinear Bilinear
Dec—Dec 1.00 .70 1.00 Linear n.s. Bilinear
0.91 (0.01) 3,171 (459) 0.89 (0.04); 0.95 (0.05) 7.1 (1.5) 0.6 (0.12) 72 (1.5)
Exp—Exp .99 .63 1.00 Linear Bilinear Bilinear
0.95 (0.02) 3,133 (538) 0.76 (0.04); 1.19 (0.02) 6.0 (1.3) 3.7 (0.8)" 6.4 (1.4)
Precalibration Dec—Exp, .83 92 .99 n.s. Bilinear Bilinear
low & high blocks 1.22 (0.19) 5,322 (515) 2.82 (0.18); 0.20 (0.03) -1.19" 3.75% 490"
combined
Precalibration Dec—Exp, .87 .90 1.00 n.s. Bilinear Bilinear
mixed block 1.18 (0.15) 4,974 (550) 2.56 (0.12); 0.39 (0.03) -0.26" 3817 6.20""
Postcalibration Dec—Exp .99 .69 .99 Linear n.s. Bilinear
0.93 (0.02) 3,223 (482) 0.91 (0.05); 1.03 (0.12) 6.8 (1.5)" 0.0 (0.0) 7.5 (1.6)"
Precalibration Exp—Dec .87 .80 91 n.s. n.s. Bilinear
0.35 (0.03) 1,384 (151) 0.53 (0.09); 0.21 (0.10) 1.2 (0.3) 0.4 (0.1) 1.9 (0.4)"
Postcalibration Exp—Dec .99 .63 .99 Linear Bilinear Bilinear
0.89 (0.02) 2,961 (505) 0.65 (0.06); 1.06 (0.06) 55(1.2) 2.4(.5)" 6.0 (1.3)

"dfs = 10, otherwise dfs = 21; T p < .075 (marginally significant); * p < .017 (significance threshold with Bonferroni correction)

increased from 0.35 (SE = 0.03) to 0.89 (SE = 0.02),
approaching the 1.0 slope of unbiased performance. This
slope increase was statistically significant (p <.001).

Discussion

Performance patterns accorded with our predictions of how
mistaken beliefs about magnitudes of numbers presented in
exponential notation would influence response patterns. We
concluded that the logarithmic-looking performance on the
precalibration Dec—Exp task was an artifact of symbol-to-
magnitude mismapping, not an indicator of underlying nu-
merical magnitude representations. The fact that perfor-
mance became linear with a slope approaching 1.0 when
confusion about the exponential value was resolved further
supports this conclusion.

Experiment 2

In Experiment 1, we assumed that participants would
typically estimate that .999 x 10%° was about .999 x
10%, or 10,000, but we did not gather self-reports
confirming that this was the case. To gain more direct
evidence of participants’ misinterpretations, in Experiment
2 we replicated the Dec—Exp task and gathered self-
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reports of participants’ interpretations of the high anchor
value. To decrease the likelihood of participants rounding
upward, we used 4.4 instead of 4.5 for the exponential
notation format (e.g., .999 x 10**). Furthermore, we in-
creased the number of high (>10,000) stimulus values
presented, enhancing our ability to detect differences in
estimation patterns in this range.

Method
Participants

A group of 24 University of Notre Dame undergradu-
ates participated for course credit (2 male, 22 female;
ages 18-20).

Stimuli, materials, design, and procedure

The stimuli and materials used in this experiment were
nearly identical to those of Experiment 1, with the following
exceptions. First, the line length was increased to 285 mm,
to reduce effects of noise due to fine motor control. Second,
the Exp—Exp and Exp—Dec tasks were not included in any
sessions. Third, in the notation we used the exponent 4.4
instead of 4.5. Pilot participants never correctly determined
that .999 x 10*4 equaled 25,094. Instead, most assumed that
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it was ~10,000. Fourth, we used different stimuli, to fit the
new number range and to expand coverage of the high
values: 75, 176, 477, 1,306, 2,587, 3,969, 6,029, 7,460,
8,091, 8,741, 9,570, 9,821, 9,872, 12,610, 15,297, 17,659,
19,090, 21,150, 24,943. Finally, at the end of the session,
participants were asked what value they had used as an
initial estimate for .999 x 10**. We predicted that a plot of
median estimates versus the stimuli would yield a slope
approaching 2.51 (corresponding to .999 x 10*/10,000)
on uncalibrated Dec—Exp trials for values less than the
assumed anchor value of 10,000, and a slope near 0 for
values in excess of 10,000. The task and block order
matched that of Group 1 in Experiment 1, except that
Exp—Exp trials were not included. All tasks were completed
during an hour-long session that also included other estima-
tion tasks not discussed in this report.

Results and discussion

The analyses matched those in Experiment 1. Table 2 and
Fig. 2 summarize the findings.

Beliefs about high anchors

Most participants reported guessing that .999 x 10** was
roughly equal to 10,000, suggesting that they rounded 10**
down to 10*. Twelve of the 24 participants reported guessing
values between 9,990 and 10,000. One reported guessing
2,500. Five reported guessing between 12,000 and 15,000.
Three reported guessing between 99,900 and 100,000,
suggesting that they rounded the exponent up to 10°. Only
three of 24 reported guessing somewhat accurately (22,000—
25,000).

Control task

The baseline performance was again linear across the num-
ber range tested. A linear function with a slope near 1.0
accounted for at least 99 % of the variance in the Dec—Dec
control task. Performance was better fit by a linear than by a
logarithmic function.

Dec—Exp tasks

Precalibration The results from the low and high blocks
replicated findings from the precalibration trials in
Experiment 1. For the low block (<10,000), the aggregate
performance was best fit by a linear function with a slope of
2.25, closely approaching our predicted value of 2.51. In
contrast, the high-block performance (>10,000) yielded a
very shallow slope of 0.17. Indeed, responses in this range
did not seem to follow a well-behaved pattern: A regression
including the data from all participants explained a statisti-
cally insignificant amount of the variance (R* = .02). When
combined, the aggregate performance on the low and high
blocks was better fit by a logarithmic function than by a
linear function (p < .05). Once again, both models were
outperformed by a bilinear model in which values above
and below 10,000 were fit separately (R*,; = .99). The
individual data mirrored the aggregate response patterns
(see the online supplement for individual analyses).

In contrast, performance in the mixed block was linear (low
and high, R, = .75, R%1og = .85; mixed, Ry, = .93, Rjog =
.78). This suggests that participants recalibrated their esti-
mates of the exponential anchor .999 x 10** when presented
with unexpectedly high decimal stimuli. A similar trend was
seen in Experiment 1, though there, it did not change the

Table 2 Linear, logarithmic, and bilinear fit information for the estimation tasks in Experiment 2

Task Linear R Log R* Bilinear R* Best-Fitting Function ¢ Tests (Cohen’s d)

Slope (SE) Beta (SE) Slope, <10,000 (SE); Log vs. Linear Linear vs. Log vs.

Slope, >10,000 (SE) Bilinear Bilinear

Dec—Dec .99 .63 1.00 Linear Bilinear Bilinear
1.03 (.01) 3,706 (472)  0.91 (0.01); 0.98 (0.04) 102 (1.7)° 4.6 (8) 10.9 (1.8)"

Precalibration Dec—-Exp, low 75 .85 1.00 Log Bilinear Bilinear
& high blocks combined 1.07 (.15) 5,125 (524)  2.25 (0.06); 0.17 (0.04) 225" 8.0(1.8)"  43(1.0)"

Precalibration Dec—Exp, 93 78 .99 Linear Bilinear Bilinear
mixed block 1.09 (.07) 4,484 (582)  1.50 (0.08); 0.47 (0.06) 2.9 (7" 4.0 (9" 5.5(1.3)"

Postcalibration Dec—Exp .99 .63 1.00 Linear Bilinear Bilinear
1.03 (.01) 3,715 (473)  0.914 (0.01); 0.98 (0.05)  10.3 (1.7)" 6.4 (1.0)° 11.3 (1.8)"

"dfs = 18, otherwise dfs = 37; " p < .05 (marginally significant); “p < .017 (significance threshold with Bonferroni correction)
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Decimal Stimuli with Exponential Anchors
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Fig. 2 Experiment 2: Median estimates and best-fitting linear and logarithmic functions for the precalibration Dec—Exp task in the low and high
blocks (left) and in the mixed block (center), and for the postcalibration Dec—Exp task (right)

outcomes of the log versus linear comparison (low and high,
RPjin = .83, RP1og = .92; mixed, Ry, = .87, R%jog = .90).

Postcalibration Performance on the Dec—Exp task follow-
ing the calibration slide was again better fit by a linear than
by a logarithmic function. The linear function accounted for
99 % of the variance. This pattern of performance again
confirmed that the “logarithmic” performance seen in the
precalibration trials was an artifact of symbol-to-magnitude
mismapping.

Discussion

The performance patterns again matched our predictions of
how mistaken symbolic beliefs would influence response
patterns. The logarithmic-looking performance on the
precalibration Dec—Exp task was an artifact of symbol-to-
magnitude mismapping, not an indicator of underlying nu-
merical magnitude representations. However, the two exper-
iments’ results did differ, in that Experiment 2’s mixed
block showed more evidence of recalibration. This differ-
ence was likely attributable to participants in Experiment 2
having been presented with more high values, though sam-
ple differences (e.g., gender distribution or time-of-semester
effects) may also have played a role.

General discussion

Our findings demonstrated that symbolic misunderstandings
can and do result in number-line estimation patterns that can
be well fit by logarithmic functions, independently of par-
ticipants’ underlying basal representations of numerical
magnitude. The performances followed predictable trajecto-
ries based on participants’ beliefs about relative values of
stimuli and anchors. Simply using a confusing notation
induced logarithmic-looking performance. Importantly, al-
though performance on these lines was well fit by logarith-
mic functions, there is little reason to believe that it was
produced by logarithmic functions. Thus, it would not be
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logically sound, here, to assume that the performance curves
fit by logarithms were produced from underlying logarith-
mic representations.

Furthermore, our finding that adults abruptly shift to
linear performance when shown a single calibration slide
parallels Opfer and Siegler’s (2007) finding that children
can abruptly shift to linear performance when given a single
point on a line: Being given the correct placement of one
stimulus value aids in the correct placement of all other
values. This opens the possibility that Opfer and Siegler’s
shift similarly resulted from symbolic issues separate from
any internal log-to-linear shift in magnitude representations.
However, the parallel between adult and child performance
is imperfect: Adults are familiar with decimal notation and
the base-10 system that underlies it. Thus, even given con-
fusing stimuli, their misconceptions do not go very deep.
Children’s problems may be more wide ranging, heaping
many unfamiliar symbolic numbers into a general class of
“big” numbers—grouping the larger stimuli along with up-
per anchors.

Here, we offer a speculative account for Siegler and
Opfer’s (2003) findings that children show logarithmic-
like number/position mapping on number-line placement
tasks. Children may map “known” values in a roughly linear
fashion, on the leftward “known” end of a line, while
placing all “big” numbers without concern for specific value
on the rightward “big” end of the line. As long as the portion
of the line that a child happens to assign to “known” num-
bers is larger than it should be on the basis of the true values
(as among our participants on the precalibrated Dec—Exp
tasks), logarithmic-looking performance is predicted. This
account is largely compatible with the bilinear models of
Ebersbach et al. (2008) and Moeller et al. (2009). Bilinear
number-to-location mapping should yield logarithmic-
looking performance if the line segment assigned to lower
numbers is overly large. Again, we note that this is specu-
lation. We suspect that the final word will not come from
experiments using number-line estimation alone. Moreover,
manipulations based on perceptual analogues to number
lines (e.g., Anobile, Cicchini, & Burr, 2012; Dehaene et
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al., 2008) may have only limited applicability, because their
stimuli are mainly nonsymbolic. Rather, several numeracy
tasks that combine these techniques may be needed to cross-
validate the findings. For instance, number comparison
tasks can assess the extent to which children’s internal
representations match performance functions seen for
number-line estimation tasks.

Conclusions

Together, these experiments serve as an existence proof
that performance on number-line estimation tasks does
not always reflect the functional forms of underlying basal
magnitude representations. A divergence between perfor-
mance functions and underlying representations seems par-
ticularly likely when misunderstandings of symbol systems
prevent accurate mapping between symbolic stimuli and
appropriate reference magnitudes. This suggests that
number-line estimation tasks may be inappropriate gauges
of underlying magnitude representations when symbols are
not properly understood, as is likely the case for young
children. We therefore urge caution when interpreting the
results of number-line estimation tasks, particularly when
making inferences about underlying magnitude representa-
tions. Investigators should bear in mind that discontinuous
or incomplete mappings between symbolic numbers and
numerical magnitudes may result in performance that is
difficult to interpret. It may be that analogous number-
line tasks relying on nonsymbolic numerosity representa-
tions (e.g., dot arrays) would be more appropriate, partic-
ularly when peoples’ understanding of the symbol system
is in question.
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