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Abstract 

Leibovich et al.’s theory neither accounts for the deep connections between whole numbers and 

other classes of number, nor provides a potential mechanism for mapping continuous magnitudes 

to symbolic numbers. We argue that focusing on nonsymbolic ratio processing abilities can 

furnish a more expansive account of numerical cognition that remedies these shortcomings.  
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This commentary was motivated by two shortcomings of the target article by Leibovich et al.: 

First, its sole focus on whole numbers leaves out entire classes of numbers, such as fractions, that 

are integral to cultivating robust numerical understanding among children and adults (Siegler, 

Thompson, & Schneider, 2011). Second, it does not offer a mechanism whereby continuous 

magnitudes can be linked to specific whole numbers. Below, we argue that focusing on 

nonsymbolic ratio processing abilities might furnish a more expansive account of numerical 

cognition, providing perceptual access both to whole number and fraction magnitudes. 

Moreover, a ratio-focused account can provide a potential mechanism for mapping analog 

representations of continuous magnitudes to symbolic numbers. 

 

Recent research has begun to systematically detail the ability of humans and other animals to 

perceive nonsymbolic ratios (e.g., Jacob, Vallentin, & Nieder, 2012; Matthews, Lewis, & 

Hubbard, 2016; McCrink & Wynn, 2007). Instead of focusing on individual nonsymbolic stimuli 

in isolation, this work focuses on perceiving ratio magnitudes that emerge from pairs of these 

stimuli considered in tandem (Figure 1a). As the extent of nonsymbolic ratio processing abilities 

becomes clearer, some have called for research that foregrounds ratio perception as a possible 

basis for numerical cognition more generally (e.g., Matthews et al., 2016). Indeed, in a recent 

book chapter, Leibovich, Kallai, and Itamar (2016) posited that the development of nonsymbolic 

ratio perception “might be at the background of all other numerical developmental processes…” 

(p370). In recognition of this fact, we view this commentary as an extension of the authors’ own 

logic to address key gaps in the theory as presented in the target article.  
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Figure 1. Demonstration of the similarities between nonsymbolic ratios made of line segments 

and number lines. From left to right, the panels represent (a) an example of a nonsymbolic 

representation of the ratio 3:10 (or 10:3) based on stimuli from Vallentin & Nieder ( 2008), (b) 

the superimposition of the component stimuli of the ratio onto one line, and (c) how the addition 

of symbolic anchors yields the traditional number line estimation task. At a minimum, accurate 

number line estimation requires cross-format proportional reasoning, matching the symbolic 3/10 

to a corresponding nonsymbolic ratio. 

	
First, we argue that whole numbers are not the whole story. In presenting their integrated theory 

of numerical development, Siegler et al. (2011) lamented that the field’s focus on whole numbers 

has deflected attention from commonalities shared by both whole numbers and fractions. This is 

a particularly interesting point given that recent research has highlighted multiple commonalities 

in the ways we process different classes of number. To name a few: 

1.     Whole numbers and fractions have both been associated with size congruity effects 

(Henik & Tzelgov, 1982; Matthews & Lewis, 2016). 

2.     Processing whole numbers and fractions both recruit the intraparietal sulcus (IPS) 

(Jacob et al., 2012; Piazza, 2010). 

3.      Whole numbers and fractions can both be represented as magnitudes on number 

lines (e.g., Siegler et al., 2011). 
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4.    Processing fractions and whole numbers exhibits distance effects in both symbolic 

(DeWolf, Grounds, Bassok, & Holyoak, 2014; Moyer & Landauer, 1967) and 

nonsymbolic forms (Halberda & Feigenson, 2008; Jacob & Nieder, 2009). 

This last fact results because numerical processing obeys Weber’s Law, and this has two very 

important implications. The first was perhaps stated best when Moyer and Landauer (1967) 

wrote that observed distance effects for symbolic numbers implied that it “is conceivable that 

[numerical] judgments are made in the same way as judgments of stimuli varying along physical 

continua” (p1520). The second is a corollary to the first and seems widely unappreciated: 

Weber’s Law is fundamentally parameterized in terms of ratios between stimulus magnitudes. 

Ironically, even the way we represent whole numbers is governed by the ratios among them. 

Together, these points raise considerable potential for integrating the psychophysics of 

perception with numerical processing via the conduit of ratio. 

 

Furthermore, we argue that nonsymbolic ratio lays the foundation for a pathway to understanding 

all real numbers. Leibovich et al.’s theory in the target article bears interesting parallels with 

Gallistel and Gelman’s (2000) theory that the primitive machinery for representing number 

works with real number magnitudes. The missing link for both is a compelling mechanism for 

establishing a correspondence between continuous nonsymbolic magnitudes and specific number 

values. Herein lies the power of nonsymbolic ratios. By juxtaposing two quantities instead of 

one, ratios of nonsymbolic stimuli can be used to indicate specific values. Although neither the 

gray nor the black line segments presented in Figure 1a corresponds to a specific number, the 

ratio between the two corresponds only to 3/10 (or 10/3). Thus, nonsymbolic ratio provides 

perceptual access to both fractions AND whole numbers. In fact, because the components are 
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continuous, these nonsymbolic ratios can be used to represent all real numbers. In this way, 

nonsymbolic ratios provide a flexible route for mapping non-numerical stimuli to specific real 

number values.  

 

The potential of this conceptualization becomes clearest when we consider that competent 

number line estimation (i.e., linear estimates) can be seen as a task bridging symbolic and 

nonsymbolic proportional reasoning (e.g., Barth & Paladino, 2011; Matthews & Hubbard, in 

press). Indeed, Thompson and Opfer’s (2010) use of progressive alignment with number lines to 

improve children’s symbolic number knowledge can be interpreted as a case in which 

nonsymbolic ratio perception is used to facilitate analogical mapping that endows unfamiliar 

symbolic numbers with semantic meaning. This technique leverages the fact that 15:100 is the 

same as 150:1000 in that both are the same proportion of the way across the number line, a fact 

that can help children understand the way the base-10 system scales up. Given that nonsymbolic 

ratio perception is abstract enough even to support comparisons between ratios composed of 

different types of stimuli (e.g., Matthews & Chesney, 2015, Figure 2), the possibilities for such 

analogical mapping abound. It may be that much of the psychophysical apparatus that operates in 

accord with Weber’s Law can be used to ground numerical intuitions. A focus on ratio 

processing stands to firmly situate numerical development within the generalized magnitude 

system proposed by the target article. 
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Figure 2. Matthews and Chesney (2015) found that participants could accurately compare 

nonsymbolic ratios across different formats in about 1100ms – even faster than they could 

compare pairs of symbolic fractions. This ability to compare ratios across formats implies that 

participants could perceptually extract abstract ratio magnitudes in an analog form. 

 

A comprehensive theory of numerical development should account for the deep connections 

between whole numbers and other classes of number, while accounting for relationships between 

symbolic and nonsymbolic instantiations of numerical magnitudes. Leibovich’s theory as 

presented in the target article neither accounts for numbers like fractions nor accounts for how 

continuous magnitudes can be mapped to specific numbers. However, adding a correction 

carving out a pivotal role for nonsymbolic ratio perception might help provide the basis for a 

unified theory of numerical cognition. 
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