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Introduction 
 
A central challenge for video gaming in education is to demonstrate evidence of player 
learning. A typical approach to assess learning in games is to measure the quality of player 
learning in terms of independent, pre-post instruments. This process can compare game-
based learning against other kinds of interventions, but, in treating the game itself as a black 
box, we lose the unique characteristics of the games as a learning tool.  James Gee has 
suggested that games themselves provide excellent models for designing the next generation 
of learning assessments. Well-designed games reward players for mastering required content 
and strategies, scaffold player activities toward greater complexity, engage players in 
organized social interaction toward shared goals, and provide feedback (through interface 
design) that allows players to monitor their own progress (Gee, 2007). Rather than ignore 
the motivating and information-rich features of games in capturing learning, assessment 
designers need to attend to the ways in which game-play itself can provide a powerful new 
form of assessment. This requires learning researchers to think of games as both 
intervention and assessment; and to develop methods for using the internal structures of 
games as paths for evidence generation to document learning.  
 
This paper presents a Game-Based Assessment model (GBA) designed to capture data on 
player learning in the midst of game-play. The GBA model has been developed by the 
Games, Learning and Society (GLS) Research group as a process for capturing relevant 
information on play and testing whether it can constitute reliable evidence of learning. The 
GBA model draws on concepts and tools from evidence-centered design (e.g. Mislevy & 
Haertel, 2006), stealth assessment (Shute, 2011) and education data mining (e.g. Baker & 
Yacef, 2009) to describe a strategy for building assessment tools into game design from the 
ground up in order to use game play itself as the barometer of player learning. 
 
This paper describes the GBA model and how it fits within the GLS game design process; 
provides an example of how the model works within a particular game (Progenitor X); and 
concludes with an account of what player interaction data tell us about learning in the game. 
The first section of the paper offers a brief overview of recent research in assessment and 
learning that provides the theoretical foundation for our argument.  We then turn to a 
description of the GBA model as nested within the GLS game development process. We 
describe how GBA is grounded in the content model and game-flow design of the game 
development process, and then turn to the distinctive features of the GBA: the semantic 
template and learning telemetry layers.  The semantic template allows researchers and designers 
to identify the key moments of player interaction in the midst of gameplay as hypotheses to 
capture significant information about player learning; learning telemetry provides a schematic 
for a generic information gathering mechanism to transform key-moment click-stream data 
into play profiles. The resulting profiles can then be matched to prior play records, other 
players, or pre-post measures to determine the validity and reliability of the GBA model, to 
identify which aspects of game-play provide salient data for learning.  The next section 
details how the GBA was integrated into Progenitor X, a GLS game designed to teach 
processes of stem-cell science in the midst of a zombie invasion. The paper concludes with 
an analysis that demonstrates the value of peering inside the black box of game data.  Our 
analysis shows that player learning is best predicted not by the number of times the game is 
played, nor by the number of successes or failures of the individual components. Rather, the 
best predictor of learning in the game is the kind of failure that players experience. As we 
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integrate GBA across other GLS games, we should be able to develop more robust 
hypotheses of which aspects of our games matter for learning, and how to better use games 
as both instruments and assessments for learning.  
 

Game-Based Assessment Model 
 
GBA begins with designing a game around specific learning goals. GBA has emerged as the 
design strategy of the Games, Learning and Society development group1. Our strategy is to 
bring content experts, game developers and programmers, artists, educators and learning 
scientists together in a collaborative design process (as described in Squire & Patterson, 
2010).  These design partners work to match subject matter content that can be best 
expressed in particular video game genres. GLS design teams identify promising content 
chunks that may enhance the public understanding of a particular domain.  Typically these 
content chunks, such as the cultivation of a stem cell culture (Progenitor X)2, the process 
through which a virus enters a cell (Virulent)3, or how implicit bias influences perceptions in 
professional settings (Fair Play)4 are laden with technical vocabulary and embedded in larger 
domain constructions. The task of the game design group is to translate core content chunks 
into games that invite players to participate in the logic of the concepts as a condition for 
learning the terminology. The development of a GBA model is critical for the design team to 
determine the relation between the game flow and the content model, in other words, to 
understand whether players can access the content chunks through game play. 
 
Recent Research on Games,  Learning,  Assessment and Data.  
The GBA design is grounded in recent research in game-based learning, evidence-centered 
design (ECD), and education data mining (EDM). We use a game-based learning experience 
to implement a version of ECD’s task/content/evidence model into the game design. We 
then collect patterns of click-stream data, as in EDM, to develop records of in-game player 
interaction that can be used as evidence for learning. Here we briefly review some of the 
core research ideas that led to our GBA design.  
 
Video games and learning. Kurt Squire asserts that “games differ from simulations in that they 
give roles, goals, and agency”, and use “transgressive play” (Salen & Zimmerman, 2004) to 
“elicit fantasies” (Squire, 2011, p. 29). A key aspect of effective game design is the 
integration of data channels that inform both play and design. Gee (2005) highlights how 
good video games include just-in-time information (scaffolding) and cycles of expertise.  
Good games include formative assessment cycles that foster ongoing feedback and 
customize player difficulty levels (Shute, 2011).  In order to maintain this immersive context 
for learning, good games consist of ongoing assessment balanced with engaging mechanics 
and narrative (Squire, 2006).  Good games are not only scaffolded, engaging designed 
experiences (Squire, 2006), they also hold the power to improve learning. Situated learning 
theory suggests that learning exists in situ, inseparable from environment or context (Brown 
& Collins, 1989).  Virtual game worlds have been shown to provide a powerful environment 
for learning, supporting apprenticeship and collective higher-order thinking skills 
                                                
1 http://www.eriainteractive.com/index.php 
2 http://www.eriainteractive.com/project_ProgenitorX.php 
3 http://itunes.apple.com/au/app/virulent/id438485177?mt=8 
4 http://www.eriainteractive.com/project_Pathfinder.php 
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(Steinkuehler & Duncan, 2008).  The communities of practice (Lave & Wenger, 1991) that 
emerge around games (Steinkuehler, 2006) amplify in-game learning by fostering collective 
intelligence and participatory cultures (Jenkins, 2006).   
 
Games are also engaging. Research across several disciples suggests that interest sparks 
learning. The affective filter (Krashen, 1985) is an impediment to learning caused by negative 
emotional responses to instructional input – an impediment that can be lifted through 
permissive, engaging learning environments in which the student feels a sense of agency.  
Teachers relate how engaging lesson plans that give learners agency often result in better 
outcomes and fewer classroom management problems.  This idea of personal empowerment 
is also central to the immersive “projected identity” of gameplay (Gee, 2003).  Compelling, 
pleasurable learning experiences (Gee, 2007), videogames often facilitate interest-driven 
learning (Squire, 2011).  Recent literacy & gaming studies have shown that interest-driven 
learning context can significantly impact student self-efficacy (Owen et. al, 2012), and result 
in dramatic increases in reading comprehension (Martin & Ochsner, forthcoming).   
   
Thinking about assessment in gaming often leads researchers and designers outside of games 
to objective, non-game-based measures of successful learning.  Game-based learning 
challenged this separation of assessment from learning.  Games not only provide data-rich 
environments grounded in the best ideas of formative assessment, they also provide 
engaging environments in which players seek to develop skills by exploring complex 
narrative worlds.  GBA plays on this data-richness and advantages of the game space to use 
game mechanics and narrative as a foundation in which to seamlessly embed assessment.  
 
Evidence Centered Design. ECD is a leading model for assessing knowledge and skills in 
complex domains that “enables the estimation of students’ competency levels and further 
provides evidence supporting claims” about the knowledge and skills being assessed (Shute, 
2011, p. 508). According to John Behrens, ECD “is flexible enough to accommodate the 
affordances of new technologies and the demand to measure new domains while providing a 
united framework to describe current practice across a wide range of assessment activities” 
(Behrens et. al., 2012, p. 47).  This broad applicability gives ECD a universal appeal, while 
leaving open the opportunity to develop other ECD-inspired assessment models specifically 
tailored to individual learning technologies.   
 
ECD includes three key layers: 1) a competency model (CM) that defines key knowledge and 
skills to be assessed; 2) an evidence model detailing what behaviors or performances should 
reveal the CM’s constructs; and 3) a task model that specific certain activities to elicit the 
behaviors that comprise evidence (Shute, 2011). ECD seems to work well with simulations 
than can be built in terms of the specified task model (e.g. Mislevy, 2011). However, 
adapting ECD to vide games has proven challenging. Val Shute notes that “making valid 
inferences about what the student knows, believes, and can do without disrupting the flow 
of the game” is a “main challenge” of educators in using games to support learning (Shute, 
2011, p. 508).  Assessing in-game performance is a “complex process that needs to take into 
account not only the engaging or motivational aspects of the activity but also the quality 
criteria that are needed according to the type of assessment that is being developed” 
(Zapata-Rivera & Bauer, 2012, p. 149).   
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Stealth assessment (SA) is a recent ECD-based approach to “identify key competencies and 
use games as instructional learning vehicles” (Shute, 2011, p. 505).  SA, in essence, is an 
ECD-based model that is focused on connecting 21st century skill competency models to 
existing video games. The competency model in stealth assessment is framed in terms of 21st 
century skill (like Creative Problem Solving), which can then be documented with click-
stream data and analyzed with Bayesian network techniques (Shute, 2011).  An evidence 
model based on the CM is created, and then aligned with a task model (which defines player 
action within existing game mechanics). Val Shute’s work explores how stealth assessment 
can link game-play goals and desired skills and knowledge. Her work matches the content 
model goals in the game (e.g. collaborate with other players to slay dragons) with 
competency model skills (e.g. 21st century skills). Recent efforts to design stealth assessment 
models have focused more on teaming the game and assessment designers so that the 
content and task models can be better aligned. GBA follows up on this insight by designing 
games around content models to create a seamless assessment/play experience.   
 
Educational data mining. Educational Data Mining’s (EDM) approach to assessment is to 
explore the click-stream data that result from participation in virtual worlds for patterns of 
user interaction, and, hopefully, evidence for learning.  EDM is “an emerging discipline, 
concerned with developing methods for exploring the unique types of data that come from 
educational settings” (http://www.educationaldatamining.org/).  EDM seeks to pull data 
from “interactive learning environments, computer-supported collaborative learning, or 
administrative” databases and analyze it according to “properties in the data itself, rather 
than in advance” (http://www.educationaldatamining.org/).  Data modeling techniques (e.g. 
statistical cluster and factor analysis) are used to identify patterns that allow analysts to make 
inferences about learning outcomes (Xu & Recker, 2010).  
 
EDM is agnostic about a pre-defined competency model to guide data collection.  Much of 
the early EDM work has taken place to analyze the kinds of mistakes that students make 
when interacting with cognitive tutors. (Baker, Corbett et. al. 2010). Identifying patterns of 
user interaction allows designers to build computer-adaptive learning models that can 
anticipate the kinds of problems that will challenge the current student skill levels. The GBA 
model seeks to build this kind of system-adaptivity into the kinds of games situated in worlds 
far more open than the typical tutoring system. We hope to build on the ECM model of 
event-stream telemetric data collection in learning games is a promising new frontier in the 
world of educational research. 
 
ECD, SA, and EDM have provided a strong precedent of assessment research in digital 
environments. The competency-based, flexible assessment framework of ECD - and by 
extension SA’s gameflow-based approach - paves the way for innovative modeling of 
assessment in educational game design.  EDM’s click-stream data mining in learning spaces 
invites a natural extension into event-steam telemetry in educational game worlds.  Together, 
they open opportunity for a new game-specific assessment models integrating ground-up 
game design with embedded assessment mechanics, based on a common content model and 
aligning event-stream telemetry to draw inferences about learning.  
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The Conceptual  Model  o f  GBA. 
The GBA model is designed to draw significant game-play moves from the game-context.  
The model has is integrated into an overall 4-layer GLS game design strategy: the content-
model; the game flow design; and the GBA components of the semantic template and learning 
telemetry (Figure 1). The first two layers, the content model and the game flow design, 
constitute the game design process. The content model outlines the learning goals for the 
game. The game flow design builds player interaction opportunities around these learning 
goals to create a gaming experience. The final two layers, the semantic template and the 
learning telemetry, form the assessment process.  The semantic template selects relevant data 
from the click-stream generated by game-play; the learning telemetry layer collects and 
organizes the resulting data-record into player-profiles. Here we provide a brief overview of 
how these layers, taken together, comprise a generic blueprint for our approach to 
assessment-driven game design. 
 

 
Figure 1: GLS Game Design Layers 
 
Content Model. The content model for a GLS game consists of several content chunks along a 
process that represents current thinking and practice and in given domain.  As with 
evidence-centered design, the content models are selected to highlight an important aspect 
of a complex domain.  However, rather than aiming to represent abstracted expertise (e.g. 
21st century skills), the content model chosen for GLS game design tends toward much more 
modest selections of content ideas that both experts and the designers feel would resonate 
with a general lay audience. Because the resulting medium for interaction is a game, rather 
than a simulation, the design team is concerned with creating motivating conditions of play 
as well as the representational accuracy of the content model. 
 
The content model for the Progenitor X game provides an example.  The Progenitor X project 
began as a collaboration between GLS designers and a UW-Madison stem-cell lab.  After 
several discussions about the scope of a potential game (including proposals to address 
public misunderstandings about the sources and uses of stem-cells, and the political 
controversies around stem cell policy), the team decided to focus on the lab processes by 
which scientists manipulate stem cells and use them in treatment. The team felt that these 
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basic science questions were often overlooked in the public debate, and that game-based 
experience with the science of stem cells could enhance the public understanding of the 
science as well as to encourage younger players to consider this kind of research as a career 
option. 
   

 
Figure 2: Progen i tor  X Content-Model 
 
The content model invited players to dissect, collect, cultivate, differentiate and treat 
diseased tissues with stem cells (Figure 2).  Each verb in the content model provides an 
occasion for interaction. A process derived from a professional practice provides a thread 
that links the concepts together into a simplistic but coherent account of the process that 
actually guides the work of scientists and doctors. The game design process for each of the 
GLS games (as well as most other learning games) begins with a similar, simplified content 
model to be translated into a game genre. 
 
Game-flow design. A GLS game is designed as to motivate player interaction and as the 
occasion for player learning. Achieving both of these tasks is important for the success of a 
learning game. Through the iterative design process, the content model is embedded in an 
interactive world that allows players to interact with the core ideas. The verbs of the content 
model are translated into “key moments” (Halverson & Gibbons, 2010) in game play in 
which players make decisions about their progress.  In this sense, the game is the ECD task 
model, but with the added necessity of providing a compelling context for players to interact 
with the content model. In other words, the game-flow design seeks to create player 
experience to interact with domain content while navigating the norms, roles and the 
narrative structure of a simulated world.  
 
The game-flow design is named to emphasize how the game provides a designed experience 
(Squire, 2006) for the player, rather than a straightforward assessment of content model 
mastery.  This requires situating key content-model verbs into critical choices of game play.  
These critical game-play choices must reflect the dual requirements of engaging players in 
the game-narrative and authentically interacting with core content. The conventions of, for 
example, a single-player shooter or a real-time strategy game, provide occasions for the 
repetition of key concepts in ways that support drill-based learning. Integrating these genre 
conventions into a compelling narrative allows for game designers to build cycles of 
repetition and exploration into game-flow. In the final section of the paper, we will provide 
an example of how (and whether) Progenitor X constructs skill building and adventure gaming 
into a coherent experience.   
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Semantic template. The semantic template and the learning telemetry layers form the main 
components of the GBA designed to select and store certain key indicators of player 
interaction. Game-worlds generate an enormous amount of player interaction data. This data 
richness provides an important advantage of virtual environments (when compared to real-
world learning environments) for tracking player interaction and performance. However, the 
click stream data that results from player interaction is typically too rich, and too 
disconnected from the game-flow, to support direct inferences about player interaction, 
much less player learning. The semantic template is designed to “narrow” the data that result 
from play in ways that allow designers to make inferences about how players interact with 
key game-flow episodes, and to compare records of player interaction with the content 
model.  
 
The semantic template is built in coordination with the game-flow design. The key question 
for semantic template design is: Of all the clicks that players make in the game, which ones 
indicate learning? The semantic template represents a hypothesis about which in-game 
actions can generate interesting evidence of learning. These hypotheses can then be 
confirmed by other analyses and used to inform subsequent game design. In some ways, the 
construction of a semantic template is similar to the design of a scoring system.  Game 
scores represent designed markers of player progress.  The point system of a game like 
Diablo III, for example, shows how designers use in-game achievements to help players 
understand their progress.  Points are rewarded for completing quests and battles, are used 
to promote players to subsequent levels, which in turn opens new quests and battles. A 
semantic template provides a slight twist to a scoring model of player progress.  In addition 
to tracking in-game progress by recording play achievements, the semantic template also 
records learning progress by recording how players interact with the content model.  
 
Learning telemetry. The learning telemetry layer collects the data specified by the semantic 
template and organizes it for analysis.  It is a mechanism of the game environment that 
coordinates the different components of the game world into a sequential data-stream that 
enables analysts to track player paths across the game-world.  Telemetry systems are already 
widely used in game-worlds and digital environments to collect data on player/user 
interaction (Gagne & Seif El-Nasr, in press). Typically, the data that result from telemetry 
analysis are used for detecting game bugs (Niwinski & Randall, 2010), improving player 
experience (Dankoff, 2011) or for connecting users to advertising (through sites such as 
Facebook and Google+). GBA adapts the telemetry concept to focus on collecting data 
specific to learning so that we can gauge player interaction with the content level and 
improve game-flow design. 
 
The semantic template and learning telemetry layers, taken together, constitute the GBA 
model. Data on player interaction are generated from the game-flow system. The semantic 
template determines which data to track, and the learning telemetry layer collects the 
resulting data for analysis.  The resulting profile of player interaction opens up the black box 
of game play to analyze the relationship between play and learning. Analysts can, for 
example, compare play in-game play profiles to pre- and post-tests to determine the relations 
between player interaction and content learning. Player profiles can be compared to one 
another as well, to determine the types of player interaction (e.g. the pace, the time spent in 
each area, the degree to which players explore the game space or use learning resources) and 
their relation to learning goals.  Player interaction data can also be dynamically visualized to 
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trace (and compare) patterns of player interaction with the system. These forms of analysis 
will allow designers to understand which aspects of the game are correlated with learning 
gains, and point designers toward the aspects of the game that can be tweaked.  Reliable 
evidence about in-game learning can also help create adaptive gaming environments, in 
which players with demonstrated competencies can be given challenges that invite 
demonstration of mastered skills and knowledge, or quests that take a different tack on 
content goals players had difficulty mastering. These kinds of records-of-play may help bring 
the techniques of computer tutoring environments (e.g. Koedinger & Corbett, 2006) to bear 
in game-play spaces.  
 
Of course, presenting a conceptual model for game-based assessment design is not the same 
as showing that the model can actually be implemented, or that it can generate reliable 
insights about play, learning and design.  We are not yet in a position to deliver results that 
would confirm the viability or the quality of the GBA model across game spaces. However, 
in the following section, we will show how we have built the central ideas of the GBA into 
Progenitor X, a game designed to teach about stem-cell science in a world overrun by 
ravenous zombies.   
 
Building GBA: Progeni tor X 
Progenitor X is a narrative-based, turn-based game involving a series of puzzles designed to 
teach basic practices of stem-cell science.  The game was developed in partnership with the 
Regenerative Medicine5 research team to present core ideas of cutting edge sciences in 
context of a game.  Progenitor X players are challenged to cultivate and differentiate stem cells, 
assemble tissues and replace organs that have been contaminated with a zombie virus.   

 
Figure 3: Progen i tor  X  Cell Level 
 
Completing game play requires players to solve 10-12 cell, tissue and organ puzzle cycles. 
Players initially encounter a cell cycle that involves a sequence of treatment and collection 
tools that transform pluripotent stem cells into particular cell types (Figure 3). Tissue cycles 
require players to layer successfully transformed cells into segments of tissue; the organ level 

                                                
5 http://stemcells.wisc.edu/faculty/thomson.html 
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requires the assembly of tissue segments into organ shapes (Figures 4 & 5).  While players 
learn the cell cycle first, subsequent play requires players to repeat cell-tissue, then cell-cell- 
tissue-cell cycles in order to complete the game. The final cycle of the game, the organ cycle, 
functioned as a boss-level that required players to use all the skills learned in the cell and 
tissue cycle (e.g. a cell-cell-tissue-cell-tissue cycle sequence) to complete the game.  
 

 
Figure 4: Progen i tor  X  Tissue Level 
 

 
Figure 5: Progen i tor  X  Organ Level 
 
Assembling the GBA required designers to build a system that would collect data on player 
interaction with the system, then to select which key moves/clicks in the game might 
correlate with content learning gains. The first stage of GBA development involved building 
the semantic template from stages of game play.  We identified 15 key moments in game 
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play, typically occasions in which players are asked to use tools in new ways or in 
combination to transition to the next cycle of play, that might yield important user data. 
Constructing the semantic template required the design team to specify the mission and the 
cycle key moments. It also led the designers to articulate three modes of aspects interaction 
within the key moments: the type of cell manipulated (Stage 1); the treatment tool used 
(Stage 2); and the type of cell collected (Stage 3). (Figure 6 provides some detail from the 
Progenitor X semantic template.). These key moment events constituted our hypotheses about 
where we would be able to locate evidence for learning in the game-flow. 
 

 
Figure 6: Progen i tor  X  Semantic Template 
 
The next challenge was to locate the key moments of the semantic template within the data-
stream generated by play. The click-stream data needed to be shaped by triangulating player 
moves and game-events into a coherent time-line that could parallel to game play flow.  The 
Progenitor X design team developed this learning telemetry layer by tagging each move players 
made in the game with information such as the button used, a time-stamp, whether the 
action suggested by the system was flashing, the name of the tool used in the action, and 
type of information included in the tag (Figure 7).   
 

 
Figure 7: Sample Learning Telemetry Data 
Once events were tagged, the resulting telemetry data stream allowed the designers to query 
the data stream in order to identify key moments in the context of game flow. The telemetry 
level recreated a sense of “played time” through a series of rich data points that allowed the 
design team to map the semantic template onto the data stream.  
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Building the GBA involved working the content experts and game designers to identify the 
semantic template key moments in game play that might elicit evidence of learning from 
play; tagging the data stream to recreate a sense of data-flow in a learning telemetry layer that 
could parallel the experienced game-flow; and developing query tools that could map the key 
moments of the semantic template onto the data-stream captured by the learning telemetry.  
Our adaptation of telemetry techniques to capture learning, rather than, for example, 
debugging or marketing purposes, indicates our attention to the correspondence of game-
play and the underlying content level. The GBA concepts and architecture open the way to 
developing generic tools for key moment recognition and data-stream recreation that will be 
used across GLS games, and, hopefully, extended to the development of any future games 
for learning.  
 
GBA Analys is :  The Role  o f  Far Fai lure .  
Our main question for analysis was whether (and how) in-game player action related to 
content learning outcomes.  In our experience, many game-based researchers hope for a 
correlation between successful play and positive learning outcomes. Our implementation of 
the GBA allowed us to look more deeply into the meaning and patterns of “successful play” 
and to draw more nuanced conclusions about the relations between play and learning.   
 
The GBA identified key moments within game play and captured data aligned with the 
semantic template to yield a very rich set of information about player action in Progenitor X.  
The analysis was conducted on data collected from 39 middle and high school students who 
played Progenitor X over a three-week period.  In addition to playing through Progenitor X, 
each student completed a brief assessment before and after play to provide an independent 
measure of content knowledge that we could use to compare with game-play patterns 
(Appendix A).  The pre-post tests indicated that players learned stem-cell science content as 
a result of play. Players had a statistically significant increase in scores (11% gain, p=.01).  
This significant increase in content understanding after gameplay gave a rich comparison 
point for analyzing specific movements during the game. 
 
We constructed within-player and across-player patterns in the GBA data, and compared the 
results with the pre-post assessment to begin to look into the black box of game-play data.  
Our analysis discussion includes three main sections: first, we discuss some of the patterns in 
comparing aggregated player data with the pre-post assessments; second, we investigate 
some of the patterns that emerged within the game-play cycles across players; third, we 
consider within-player differences in the kinds of failure experienced in the game, and how 
these differences relate to the pre-post learning measures.  
 
Aggregate trends 
Our first analysis focused on game data aggregated across players. In order to sort the player 
data into meaningful patterns, we developed an efficiency ratio that measured the number of 
successful cycle completions by a player over the number of times the cycle was tried. For 
example, if a player successfully collected the required number of cells in a cycle 2 times, and 
tried to complete the cycle 5 times, the player’s efficiency ratio would be 40%.  
 

Efficiency Ratio = # of successes/# of tries 
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The higher the percentage, the more efficient the play. The efficiency ratio operationalizes 
our assumption that mastery of the game mechanics means the improving successful cycle 
navigation with fewer tries. Our initial hypothesis, then, was that improved play efficiency 
would be an indicator of successful learning, both of the game mechanics and the underlying 
content model.  
 
 Game Progress Pre-Post Gains 
Total Gameplay  11% average increase 

(t-test sig = .0098) 
Efficiency Ratio significant positive 

correlation* (r = .3254) 
no significant correlation 

Boss-level Efficiency Ratio  significant positive 
correlation (r = .3219) 

                                            n=39, α = .10 
Table 1: Aggregate Progen i tor  X  Data Summary 
 
Our findings on this initial hypothesis were mixed. Player progress through the game was 
positively correlated with efficiency ratio. In other words, players with higher efficiency 
ratios had higher game completion rates.  However, the aggregate efficiency ratios told us 
little about learning outcomes as measured by the post-test.  Neither the total numbers of 
tries, the total numbers of successes, nor the aggregate efficiency ratio (across cycles) were 
significantly correlated with pre-post learning gains.  Only in the last cycle of the game (the 
organ cycle boss level) was the efficiency ratio correlated with pre-post gains (r = .3219).  
Thus, by the end mission of the game, being good at the mechanics was associated with 
learning the content model. However, we were unable to identify game mastery (as measured 
by player efficiency ratio) with content learning (as measured by pre-post tests) from 
aggregate game-play data. This led us to investigate what was going on with players within 
the specific game cycles.  
 
Cycle-Spec i f i c  Examinat ion 
Our next step was to investigate patterns of player interaction data within the individual 
game cycles. We found two indicators in which interaction data were positively correlated 
with the pre-post learning gains (Table 2). Both indicators occurred in the cell cycle of play. 
  
 Game Progress 
 # of cell cycle starts Significant negative correlation* (r = -.2965) 
 # of cell cycle destroys Significant negative correlation (r = -.3390) 
 # of TOTAL cycle starts (all types) No significant correlation 
                      n=39, α = .10 
Table 2: Progenitor X Cycle Starts and Destroys 
 
The first indicator was the number of times a player started a cell cycle; the second was the 
number of time the cell cycle was destroyed (i.e. the player failed to collect the appropriate 
number and kind of cells).  In both cases, the number of cell cycle starts and the number of 
cell cycle were negatively correlated with pre-post learning outcomes, while the total starts 
and destroys across the game were not significantly related to learning. What was going on 
for players in the cell cycles? 
 



Game-Based Assessment   14 

In order to examine player interaction action, we mapped all possible outcomes for the cell 
cycle play.  Play in the cell cycle requires players to populate an initial grid with the kinds of 
ips cells that can be transformed into the target population, and to manipulate the cells 
toward the appropriate transformation.  There were four ways that cell cycle play could end 
(Table 8).  Player can end play in in one successful path, by populating the initial grid with 
the right cells, and collecting the correct kinds of cell. Players can fail in three ways. First, 
they can conduct the initial population correctly, but take too many turns manipulating the 
cells, which causes the Ph in the culture to become toxic (the equivalent of having the health 
meter run out). Second, they can conduct the initial population correctly, but fail by 
collecting the wrong kinds of cells (incorrect cell collection). Third, they can incorrectly 
populate the cell with the right kinds of cells at the outset, and end a cycle by collecting 
incorrect cells while the health meter runs out.   
 
Action Correct 

Collect 
Ph Meter 

Fail 
Incorrect 
Collect 

Ph Fail + 
Incorrect 

Initial Population? ✓ ✓ ✓  
Completed in time? ✓  ✓  
Success? ✓    
Table 3: Progenitor X Cell Cycle Outcomes 
 
The possible player outcomes imply varying degrees of player compliance with in-game cues 
(e.g. flashing buttons, in-game narration, suggested play examples).  The redundance of in-
game cues suggests differences between at least two kinds of failure in the game: players who 
complied with game cues but failed to master the mechanics, and players who did not heed 
the game cues and tried to “game” the mechanics.  Our second hypothesis was that players 
who followed the cues, but simply ran out of time, had a better chance of learning the 
content model when compared to players who disregarded the game’s guidance system. 
  

 
Figure 8: Progenitor Cell Cycle Player Outcomes 
 
To explore this idea, we grouped the latter two types of failures into “near” and “far failure.” 
(Figure 8).  We thus grouped 3 possible player outcomes: A) correct collection (successful) ; 
B) correct set-up but health runs out (near failure) and C) incorrect collection and/or time 
runs out (far failure). 
 
The analysis of far failures gave considerable insight into the player data. While the total 
number of failures (of all kinds) had no relation to cell cycle completion, the number of far 
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failures across players was negatively correlated with cell cycle completion. We also found 
that the number of “far failures” for players across all cycles was negatively correlated with 
learning as measured by the pre-post tests (r = -.2788; p=?).  Other indicators of play, 
including the number of cycles started, number of successful collects, and total number of 
cycles completed had no correlation with pre-post gains.   
 
To deepen our understanding of far failure, we compared the incidence of these types of 
failure in the player groups in the upper and lower quartiles of pre-post assessment gain.  
The upper player quartile included 10 students who averaged a 33% increase in content 
model learning; the lower player quartile included the same number of students who 
averaged a 17% decrease in the pre-post learning score.  With the upper quartile players, the 
number of cell cycles started (and the number of times the grid was destroyed) was positively 
correlated with learning gains.  The lower quartile was opposite: cell cycles started (and 
number of grid destructions) were negatively correlated with learning gains.  This implied that 
the upper quartile was learning more than the lower quartile during each cell cycle, whether 
they failed or succeeded.  
 
The lens of far failure uncovered further differences in quartile group comparisons (Table 4).  
On average, students in the lower quartile had 7 cycles of far failure, while upper quartile 
students only had 2.3 cycles.  Since both groups had comparable total NUMBERS of failures, 
the lower quartile had a greater proportion of far failures; thus, their losses in learning the 
content may be linked to the quality of their responsive to the game queues.  The pre-post 
correlation with this number suggests that certain types of failure, not failure itself, inform 
learning. 
  
 Upper Q Lower Q 

# cell starts Sig. + correlation with pre-post 
(r = .7059) 

Sig. - correlation with pre-post 
(r = -.8641) 

# of cell destroys + correlation* with pre-post  
(r = .3401) 

Sig. - correlation with pre-post 
(r = -.5261) 

# of “far” failure 
cycles  (average) 

2.3 7 

Sig. + correlation with pre-post 
(r = .5796) 

Sig. - correlation with pre-post 
(r = -.9408) 

Total failures No significant difference. No significant difference. 

                * n=20, α = .10 
Table 4: Progenitor X Far Failure Analysis 
 
Discuss ion 
The GBA model allowed us to move beyond a simple pre-post comparison of game play to 
learning outcomes by providing data on how players interacted with the game environment. 
The design of the semantic template allowed us to collect data at (what we believed to be) 
key moments in the course of game-play; the learning telemetry allowed us to tag and 
assemble these click-stream data points into play profiles we could use for analysis. The 
GBA model allowed us to blend the structural aspects of evidence-centered design with the 
openness to player click-stream data of education data modeling to generate information 
flows that informed our understanding of game-play and learning outcomes.  
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Our initial findings that game completion led to pre-post gains led us to explore whether 
game-play data could deepen our understanding of learning.  We found that completion of 
the organ boss level, in which players recapitulated prior cell and tissue levels, was correlated 
with the pre-post games.  However, we found no significant correlation with the number of 
tries, the number of failures, or the number of times players played the game and the 
learning outcomes.  To further explore the player data, we distinguished between the ways in 
which players could fail in the game.  We found that two kinds of failure, the far failure 
condition, were negatively correlated with pre-post learning gains.  Players with the highest 
learning gains experienced 2.3 far failures in the course of game play, while players in the 
lowest quartile experienced 7 far failures.  
 
What do these data mean in the context of game play? A common challenge of games for 
learning research is the difficulty of disentangling mastery of the learning mechanics from 
learning outcomes. Playing the game, in other words, is not the same as learning the 
underlying content model (e.g. Clark & Martinez-Garza, in press). Much of the connection 
(or disconnection) between the game-flow and the content model rests on the quality of the 
game design.  Good games translate the content model to the player through compelling in-
game moves and strategies, while poor games allow players to mash buttons and “game” the 
environment while bypassing the content model. Far failure is another way of describing a 
play-style of “gaming” the Progenitor X environment. Players who click cells and tools not in 
compliance with the content model were notably less successful in learning the underlying 
content than players who attended to the in-game prompts.  This suggests that the 
Progenitor X game mechanics were attuned to the content model, and that playing the game 
as designed allowed players to successfully learn the content. 
 
The data provided by the GBA model were able to provide some insight into the role of 
failure in Progenitor X game play.  Games allow players to experiment with failure without 
real-world consequences.  However, the kinds of failures players experience matter.  
Productive failure (Kapur, 2008) suggests that effective learning environments encourage 
students to activate prior knowledge as a condition for direct instruction. Progenitor X 
introduces players into an unfamiliar subject matter context (regenerative medicine), but in a 
familiar game-genre context (puzzle-based video games). Familiarity with the game-
conventions invites players to interact with a system in order to learn the programmed 
relationships between cells, tissues, tools and cultures.  One way to interpret the results of 
our analysis is that productive failure happens when players bridge game-mechanic 
knowledge to content-model knowledge through game-play; non-productive failure happens 
when players ignore the content model and treat Progenitor X as a colorful puzzle game with 
zombies.  The richness of the data generated by the GBA will allow us to further explore the 
relations between player interaction and learning.  
 
In addition to informing our understanding of player learning, the GBA design also 
generated valuable information on game redesign. The design team was able to use the 
semantic template design, for example, as a tool to clarify how players should interact with 
the game cycles. In one cycle, players were asked to prepare a report on the correct 
configuration of cells and tissues for recreating zombie-resistant hearts. The initial design of 
the report was more of a perfunctory click-though screen that allowed players to proceed to 
the next challenge in the game. GBA designers saw the report development as a valuable 
occasion for players for reflection-on-practice that would summarize in-game experience for 
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communication to a non-playing character. Building in-game consequences for the quality of 
the report (e.g. making key resources available based on report recommendations) suggested 
game mechanic ideas that would embed reflective practices in the context of game-flow.  
 
The design concepts and data we have presented here also highlight several limitations in the 
scope and implementation of GBA.  First, the “bet-hedging” role the semantic template 
plays may narrowing the data too severely and can leave out the very information necessary 
to understanding player interaction and learning. A key insight of education data mining 
research is to include as much of the data as possible on the grounds that the analyst never 
knows which patterns of game-flow moves might be most important.  
 
Second, our discussion of the GBA overlooks the advantage that game-based learning has 
over other learning interventions. James Gee (2008) describes how the potential of games 
for learning means that “little g” games (such as Progenitor X) should be nested in “Big G” 
game contexts that activate play-based learning in social and knowledge rich interaction 
contexts. By defining learning in terms of understanding the content model, we deliberately 
focused attention of the GBA design on the little g game outcomes, and have deliberately 
avoided mention of the larger contexts, such as the narrative context of zombie games, or 
the social contexts of interactive play, that bring game-based learning alive.  Similarly, by 
focusing on how games provide access to a particular content model, our presentation of the 
GBA has ignored the emergent (Steinkuehler, 2004) or transgressive (Aarspeth, 2007; Kafai, 
Fields & Giang, 2009) ways that players transform the game experience and outcomes 
through play. We feel that narrowly defining the GBA to omit what some scholars claim to 
be the central contributions of games to learning is a serious issue with our presentation of 
the GBA.   
 
Our response to these comments is to emphasize the modest, preliminary nature of our 
investigations. The guiding question of the GBA design was not to issue definitive 
statements about the future of game-based assessment, rather, it was to address the much 
more modest goal of whether we can say anything interesting about learning with structured 
in-game data.  The semantic template allowed us to build “mid-level” hypotheses about 
which data might count for learning, and led us to analyses that correlated the relation 
between patterns in these data points with pre-post tests.  While more sophisticated data-
mining techniques will enable future iterations of GBA research to explore nuanced patterns 
of interaction and learning, we feel that the insertion of a semantic template between the 
game-flow and the telemetry layers provides a model of “theory-driven” inquiry that can 
supplement, rather than supplant, the more “brute-force” search techniques of data-mining.  
 
Similarly, the modest aims of GBA to say something interesting about learning is intended to 
supplement, not supplant, the more ambitious agenda of locating little g learning in Big G 
contexts.  If the little g game can generate reliable information on content learning, then 
embedding GBA architectures in a Big G context may allow for a much wider set of 
comparisons within and across players and contexts, thus enriching, rather than diminishing, 
the range of inquiry open to game-based learning researchers.  Our goal is to integrate some 
version of GBA architecture across GLS learning games, then, in collaboration with our 
partners, linking data flows from game environments across play contexts and even into 
school information systems.  Our agenda is to use GBA to show that games can serve as 
assessments that generate reliable evidence for content learning to formal education 
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environments, which can then legitimate the liberating potential of games as the ultimate 
disruptive technology to shake and rattle the social conventions that limit the potential of 
learning technologies in schools. 
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