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ABSTRACT

Three experiments with 88 college-aged participants explored how unlabeled experi-
ences—learning episodes in which people encounter objects without information about
their category membership—influence beliefs about category structure. Participants per-
formed a simple one-dimensional categorization task in a brief supervised learning phase,
then made a large number of unsupervised categorization decisions about new items. In all
three experiments, the unsupervised experience altered participants’ implicit and explicit
mental category boundaries, their explicit beliefs about the most representative members
of each category, and even their memory for the items encountered during the supervised
learning phase. These changes were influenced by both the range and frequency distribu-
tion of the unlabeled stimuli: mental category boundaries shifted toward the middle of the
range and toward the trough of the bimodal distribution of unlabeled items, whereas
beliefs about the most representative category members shifted toward the modes of
the unlabeled distribution. One consequence of this shift in representations is a false-con-
sensus effect (Experiment 3) where participants, despite receiving very disparate training
experiences, show strong agreement in judgments about representativeness and boundary

location following unsupervised category judgments.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

If there is any consensus in current theorizing about hu-
man categorization and induction it is probably that, by
and large, people are good at it. Most theories assume that
human learning mechanisms accurately model the statisti-
cal structure of the world in order to make correct infer-
ences about the category membership or hidden
properties of novel items when they are encountered.
Some theories explicitly propose that people behave opti-
mally in this regard (Anderson, 1991; Kemp, Perfors, &
Tenenbaum, 2007); others do not directly argue for opti-
mality but nevertheless view categorization and inductive
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inference as arising from some statistical approximation of
the true structure of the environment (Kruschke & Johan-
sen, 1999; Rogers & McClelland, 2004). At the same time,
it is apparent that people often form mistaken representa-
tions of categories. Social stereotypes constitute one obvi-
ous example—people believe that boys are better at math
than girls (Herbert & Stipek, 2005) or that attractive people
are more ethical than plain people (Smith, McIntosh, &
Bazzini, 1999) despite the absence of real differences in
the distributions of these attributes in the population. In
the natural world, common misconceptions include the be-
liefs that whales are fish, or that bats lay eggs. A complete
theory of human categorization must account for both the
successes and the failures. The current paper explores
semi-supervised learning as part of the explanation for
how categorization can go wrong.

Semi-supervised learning (SSL) has been well studied in
the field of machine learning (e.g., Chapelle, Zien, & Schol-
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kopf, 2006; Zhu & Goldberg, 2009), but only recently have
the key ideas begun to inform theories about human cate-
gorization and induction (Love, Medin, & Gureckis, 2004;
Vandist, De Schryver, & Rosseel, 2009; Zhu, Rogers, Qian,
& Kalish, 2007). For this reason, we begin by introducing
semi-supervised learning and reviewing recent studies of
semi-supervised learning in people. We then consider
how semi-supervised learning may lead people to draw
incorrect conclusions about category structure.

Most approaches to object categorization assume either
that category learning is fully supervised or fully unsuper-
vised. In supervised approaches, the learner is always pro-
vided, in each learning episode, with some depiction or
description of the stimulus (usually a vector of observed
features x) as well as true information about the property
to be learned (e.g. the category label or some other novel
feature y). On the basis of experience with some set of n
such training items, the learner acquires a mapping from
the stimulus feature space to the learned property which
can then be applied to novel items whose features are ob-
served but whose true category label or target property is
unknown. We refer to the feature to be predicted as the
“label”; instances where this property is known are “la-
beled”, those for which it is unknown are “unlabeled”.
There is no implication that labels must be words. The best
known computational models of human categorization—
for instance, ALCOVE (Kruschke, 2002), the generalized
context model (Nosofsky & Palmeri, 1997), the Rational
model (Anderson, 1991), and connectionist approaches
(Rogers & McClelland, 2004)—have mainly been explored
in the context of supervised learning.

Unsupervised approaches also suggest that the learner
encounters, in each learning episode, a depiction or
description of a stimulus, but is not provided with any
information about the item’s true category membership
(see Pothos & Bailey, 2009; Zeithamova & Maddox, 2009).
Instead, the learner must simply learn to group items into
categories based on their observed properties, and to use
the resulting “unsupervised” categories to make inferences
about a new item’s class membership or unobserved prop-
erties. Unsupervised learning is exemplified by the many
available methods of cluster analysis (Du, 2010; Kojima,
Perrier, Imoto & Miyano, 2010), competitive-learning algo-
rithms (Si & Treves, 2009), and methods for computing
topographic maps such as the Kohonen learning rule
(Kwok & Smith, 2005).

The category learning problems normally faced by hu-
man beings are, however, neither fully supervised nor fully
unsupervised. Children (and adults of course) very fre-
quently encounter objects in the world without labels (that
is, without an authority providing the true class member-
ship or hidden properties of each item), but occasionally
they also receive labels, as when mom or dad points out
an object and names it, or when teachers explicitly teach
new facts about familiar items in class. Semi-supervised
learning is an approach to knowledge acquisition in which
the learner has access to both labeled and unlabeled exam-
ples and must combine these to categorize and make infer-
ences about new items.

In machine learning, where semi-supervised learning
has been formally studied, a key insight has been that,

for some kinds of problems, the learner can converge more
rapidly on true beliefs about category structure if informa-
tion from both labeled and unlabeled sources is combined.
To illustrate the intuition, consider the example of a trav-
eler camping in the wilderness of a foreign land (see
Fig. 1). The traveler observes an animal in the shadows
and can discern it is about 1.5 feet long. His companion
tells him the animal is a dax. Sometime later he observes
a larger animal, about 2.5 feet long, and his companion in-
forms him it is a zog. From this labeled information, the
traveler may infer that daxes are typically about 1.5 feet
long; zogs are typically about 2.5 feet long; and the bound-
ary between them is somewhere around 2 feet in length.
But now suppose the knowledgeable companion leaves to
collect firewood, and the traveler is left alone to observe
animals scuffling in the shadows. Over time he observes
animals of different lengths, and he notices that there are
two clusters: a group a smaller animals about a foot in
length, and a group of larger animals about 2 feet in length.
The traveler might reasonably infer that the smaller group
consists of daxes and the larger group of zogs, and might
adjust his beliefs about these categories accordingly, de-
spite not receiving any further instruction about true cate-
gory labels. For instance, he may end up deciding that
daxes tend to be about a foot long (rather than 1.5 feet);
that zogs tend to be about 2 feet long (rather than 2.5 feet);
and that the boundary between these is about 1.5 feet in
length. Thus the probability density of the unlabeled distri-
bution might reasonably be used to adjust conclusions
about both the central tendencies and boundary between
categories, compared to the conclusions drawn from la-
beled data alone.

Such an adjustment will be beneficial to the learner gi-
ven certain assumptions about the relationship between
the unlabeled distribution and the category structure. Spe-
cifically, if it is the case that the labeled categories corre-
spond to dense regions in the unlabeled distribution, and
that category boundaries align with sparsely occupied re-
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Fig. 1. Distributions of labeled and unlabeled items. Dax’s are small, with
a modal length of 1'. Zog’s are larger, with a modal length of 2'. The
learner is trained on a relatively large Dax (1.5’) and a large Zog (2.5).
This experience leads to an incorrect “Labeled” boundary (2’). Experience
with unlabeled items from the distributions of Daxs and Zogs allows the
learner to reline the boundary, and match the trough between the
distributions (distribution boundary).



108 C.W. Kalish et al./Cognition 120 (2011) 106-118

gions of the unlabeled distribution, then the unlabeled dis-
tribution can be fruitfully employed to glean better esti-
mates of the categories’ central tendencies and
boundaries. Indeed, Gaussian mixture models capturing
these intuitions have shown that, under the correct
assumptions, a semi-supervised learner can converge on
true beliefs about category structure with very few labeled
items.

This use of labeled and unlabeled data can, however,
lead the learner toward incorrect conclusions when the
assumptions fail. To see this, consider that, in the animal
kingdom, size is not always a good cue to category mem-
bership. House cats and mountain cats, for instance, are
quite different in size despite being members of the same
category, whereas mountain cats and coyotes are of com-
parable size despite being members of different categories.
Suppose our traveler is camping in a forest where there are
many feral cats about a foot long, some mountain cats that
are about 3 feet long, and some coyotes that are about
4 feet long. The traveler first glimpses a 3-foot mountain
cat in the shadows and is told that it is called a dax, and la-
ter views a 4-foot coyote and is instructed that it is a zog.
From this labeled information, the traveler might correctly
conclude that the size boundary between daxes and zogs is
about 3.5 feet. Now, when the traveler is left alone he
views many animals that are about a foot long (feral cats),
and many that are between 3-4 feet in length. In this case,
the true category boundary between cats and coyotes
(around 3.5 feet) does not align well with the gap in the
unlabeled distribution (around 2.5 feet). If the traveler al-
ters his beliefs about category structure to conform better
to the unlabeled distribution, he will arrive at the incorrect
conclusion—that daxes are about 1 foot in length; that zogs
are about 3.5 feet in length; and that the boundary be-
tween these is around 2.5 feet. He may even end up con-
cluding that his guide was wrong about the 3-foot-long
animal he previously labeled as a dax! In general, when
the true category labels are distributed over items in ways
that do not “line up with” the probability density of the
unlabeled data, semi-supervised learning of this kind can
mislead the learner.

In this paper we consider whether this is a potential
mechanism by which people draw incorrect conclusions
about category structure. This possibility requires, of
course, that people do actually combine labeled and unla-
beled observations when learning about category struc-
ture. There is remarkably little research on this topic in
the literature. Zaki and Nosofsky (2004) approached the
problem indirectly when they studied what they called
“learning during transfer” (i.e., learning without feedback
during the test phase of a categorization study), but they
did not attempt to measure or model the magnitude of
such learning. VanDist and colleagues (2009) explicitly
studied learning from labeled and unlabeled examples in
a simple categorization task and failed to find any influ-
ence of unlabeled examples on human performance: Par-
ticipants did not learn a category boundary any faster
when unlabeled trials (no feedback) were interleaved with
labeled (corrective feedback). Their task, however, re-
quired learning of an “information-integration” boundary
combining two non-integral dimensions, which is thought

to depend on immediate corrective feedback (Ashby, Quel-
ler, & Berretty, 1999). The task also employed a fairly high
proportion of labeled trials (50%) in the “semi-supervised”
condition, possibly minimizing any impact of unlabeled
data.

Zhu and colleagues (Zhu, Rogers, Qian, & Kalish, 2007)
provide the best evidence for human semi-supervised
learning in a one-dimensional two-category learning task.
Participants viewed visually-complex shapes varying along
a line in a multidimensional feature space, and had to learn
to assign each shape to one of two classes. In a supervised
phase, participants learned to classify a single exemplar
from each category (each appearing 10 times), and ac-
quired a category boundary midway between the two la-
beled items. They then made a large number of
categorization judgments without feedback (unlabeled tri-
als). Unlabeled items were selected from a bimodal distri-
bution aligned so that the two original labeled items fell
either on the rightmost or leftmost tails of the two peaks.
Over the course of categorizing these unlabeled items,
the participants’ mental category boundaries tended to
shift away from the original learned boundary between
the labeled items and toward the trough in the bimodal
distribution from which unlabeled items were selected—
that is, toward the left when the labeled trials appeared
on the rightmost tails, and toward the right when the la-
beled items appeared on the leftmost tails. Participant
behavior was well fit by a mixture-of-Gaussians model of
semi-supervised learning, suggesting that people are in-
deed apt to assume that category labels “pick out” clusters
in the feature representation space.

In the following three experiments, we used the method
employed by Zhu and colleagues to investigate how hu-
man categorization behavior changes with exposure to
unlabeled data. The key difference is that, in the earlier
work, the category structures suggested by labeled and
unlabeled data were roughly consistent: each labeled item
was closest to a different peak in the unlabeled distribu-
tion. Here we consider what happens when the distribu-
tion of unlabeled items grossly violates the category
structure suggested by labeled data alone. Do learners then
ignore the unlabeled distribution and base their conclu-
sions solely upon the labeled data? Or do they change their
beliefs about category structure based on the unlabeled
distribution, making judgments that end up violating the
information provided by the labeled experience?

Like Zhu et al. (2007), our studies employ stimuli that
vary along a single dimension. This is a somewhat artificial
scenario insofar as most natural categories involve items
that vary along multiple stimulus dimensions simulta-
neously, but it brings at least two advantages. First, one-
dimensional category learning is the only setting where
semi-supervised learning in people has been conclusively
demonstrated to date. Second, stimuli that vary in multiple
dimensions raise additional questions about feature selec-
tion: how do people decide which dimensions are impor-
tant for the categorization problem? Such questions,
though certainly of considerable interest, are orthogonal
to the issues explored in the current work. For these rea-
sons, we have explored a 1D category learning task. In
the general discussion, we will consider further the appli-
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cability of our findings to real-world category learning
problems, and how the approach might be extended to
multidimensional stimulus domains.

2. Experiment 1

Experiment 1 introduces the basic paradigm used in the
three experiments. Participants encountered schematic
images of women varying along a single dimension, width.
The women were presented as coming from one of two is-
lands. In an initial supervised phase, two labeled exam-
ples—one from each category—were presented
repeatedly. At each presentation participants guessed the
island from which the woman came and received correc-
tive feedback. A block of unlabeled examples followed in
an unsupervised phase. In the baseline condition, a modest
number of unlabeled items (28) fell at evenly-spaced
points between the two labeled items, allowing us to esti-
mate the learned boundary between categories following
the supervised experience. In the experimental conditions,
a large number of unlabeled examples (411) were sampled
from a mixture of two Gaussian distributions positioned so
that the peaks and trough of the bimodal distribution vio-
lated the category structure suggested by the two labeled
items (see Fig. 2). In all three experiments, the central
question was whether unsupervised classification of items
sampled from the bimodal distribution of unlabeled exam-
ples would lead participants to draw conclusions about the
structure of the two categories that contradicted the con-
clusions drawn from the supervised learning of labeled
examples.

2.1. Method

2.1.1. Participants

The participants included 43 undergraduate students at
a large mid-western university who volunteered for the
study in order to receive extra credit in their Psychology
classes. 24 participants were in the baseline condition
and 29 were in the experimental condition.

i

109

2.1.2. Design and procedure

Participants were seated at individual computers in a
computer classroom. The experiment began by asking par-
ticipants to imagine that they were anthropologists study-
ing the inhabitants of two remote islands, Pitolan and
AinaKanu. The participants were informed that they would
see various silhouettes of women from the two islands, and
that their task was to learn which women were from Pito-
lan and which were from AinaKanu. After reading the basic
instructions, participants moved to categorization trials.
Each trial consisted of a single stimulus (silhouette)
appearing on the computer screen with the prompt,
“Which island is she from?” The stimulus appeared cen-
tered on the screen. Two buttons, each labeled with an is-
land, appeared below offset to the right and left.
Assignment of island name to thin and wide stimulus cat-
egories was randomized across participants. Participants
indicated their categorization decision by clicking one of
the two buttons. Selecting an island produced correct/
incorrect feedback in the supervised phase but no feedback
in the unsupervised phase. A second button click ended the
trial and began the next. There was no time limit on
responses.

2.1.2.1. Supervised phase. In both baseline and experimen-
tal conditions participants began with a supervised learn-
ing phase in which they viewed five instances each of
two labeled stimuli presented in random order. There were
two different sets of labeled stimuli utilized for this exper-
iment, with half of the participants in each condition
receiving one set of stimuli and the other half receiving
the other set of stimuli. The “left” labeled set consisted of
two relatively thin stimuli, one with a pixel-width of 80
and the other with a pixel-width of 115. The “right” set
consisted of two somewhat wider stimuli of pixel-width
135 and pixel-width 165. Critically the boundary between
each set of labeled stimuli (the mean of the two) was offset
from the trough in the distribution of unlabeled stimuli
and split either the leftmost or rightmost mode—in this
sense, the boundary suggested by the labeled examples
was inconsistent with the boundary suggested by the unla-

.
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Fig. 2. Examples of stimuli and frequency distribution (Experiment 1). Bi-modal distribution of stimuli had peaks at 100 and 150 with mean of 125 and
range from 20 to 200. Left-shifted labeled stimuli had values of 80 and 115. Right-shifted labeled stimuli had values of 135 and 165.
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beled distribution (the trough). In this phase participants
received corrective feedback: The corrective feedback con-
stituted the labeling for stimuli in this phase. When the
stimulus was assigned to the correct island, the word
“yay!” flashed upon the screen. When the participant
made an incorrect assignment, the word “boo!” flashed
upon the screen.

2.1.2.2. Unsupervised phase: Baseline condition. Since our
primary research question was whether participants’ be-
liefs about category membership would change after expo-
sure to unlabeled examples drawn from a shifted
distribution, we first needed to assess the beliefs they
formed from the supervised phase alone. The baseline con-
dition was designed to estimate where participants implic-
itly place the category boundary, and subsequently to
measure their explicit beliefs about the most representa-
tive members of each category, following the supervised
phase. Thus immediately following the supervised phase,
participants in the baseline condition classified seven un-
ique items four times each (28 trials total), including the
two labeled items and five additional items appearing at
equally-spaced intervals between these. The 28 items ap-
peared in random orders generated separately for each
participant. There was no feedback in this unsupervised
phase, rendering the stimuli “unlabeled”.

2.1.2.3. Unsupervised phase: Experimental condition.
Immediately following the supervised training, partici-
pants in the experimental condition viewed and catego-
rized 411 unlabeled items selected as follows. First they
viewed 37 stimuli in random order sampled in steps of
5 pixels along the full range from the smallest (20) to the
largest (200) possible values. As in the baseline condition,
this “grid sampling” allowed us to estimate where partici-
pants implicitly place the category boundary following the
supervised phase. In contrast to the baseline condition,
however, the grid spanned the full allowable stimulus
range rather than just the range between labeled items.
Following this, participants viewed 300 items sampled
from a mixture of two Gaussian distributions (the fre-
quency distribution) plus an additional repetition of the
37 grid items randomly intermixed to ensure full coverage
of the range. The two Gaussians had means at 100 and 150
with standard deviations of 13; the trough between the
two modes was at 125. Finally, the 37 grid stimuli were
again presented at the end to provide a final estimate of
the implicit category boundary after exposure to the bimo-
dal distribution. Thus participants viewed and categorized
411 items in total. From the experimenters’ perspective
these 411 decisions were divided into: initial grid (1-37),
Gaussian distribution plus intermixed grid (38-374), and
final grid (375-411). As in the baseline condition, partici-
pants received no feedback about their decisions, so the
items were unlabeled.

2.1.2.4. Assessment of explicit beliefs about categories.
Following both the baseline and experimental unlabeled
conditions we elicited explicit judgments about the most
typical members of each category and about the boundary
between categories following the unsupervised experi-

ence. The participants read the following instructions:
“Now we would like you to show us your idea of the typ-
ical or average islander. Use the slider to select the body
size most representative of a person on the island named.”
Participants set the position of a slider that controlled the
width of a schematic woman’s silhouette on the screen.
Once participants had finished this task, they read the fol-
lowing instructions: “Now please show us the woman at
the boundary between the two islands. Use the slider to
indicate the point at which women shift from one island
to the other.” Participants again used the slider to indicate
their explicit, final category boundaries.

2.1.2.5. Materials. The stimuli consisted of simple shapes
suggestive of female silhouettes (see Fig. 1). The shapes
differed from each other only in terms of the width of
the torso, which ranged from 20 (for the thinnest silhou-
ette, which measured 20 pixels across at its widest point)
to 200 (for the widest silhouette, which measured 200 pix-
els across at its widest point). The size of the head was
fixed.

2.1.2.6. Measures. The experiment is designed to measure
participants’ implicit and explicit beliefs about category
structure (size of the most representative examples of each
category and location of the boundary between them) and
to compare these against theoretically relevant landmarks
in the labeled and unlabeled distributions. From the la-
beled distribution, the relevant landmarks are the “labeled
boundary,” that is, the point midway between the two la-
beled examples in the supervised phase, as well as the la-
beled points themselves. If participants employ just the
labeled information in guiding their category decisions
(the null hypothesis), they should place the boundary be-
tween categories near the labeled boundary, and should
judge items near the labeled points to be most representa-
tive of each category.

From the unlabeled distribution, the relevant land-
marks are the “distribution boundary,” that is, the trough
in the unlabeled distribution, and the modes of the bimo-
dal distribution. If participants’ beliefs about category
structure are altered by exposure to the unlabeled distri-
bution (SSL hypothesis), they should place their category
decision boundary closer to the trough than to the labeled
boundary, and their judgments of the most typical items in
each category should be shifted away from the labeled
points and toward the modes of the unlabeled distribution.

To test these different hypotheses, we must measure
the participants’ beliefs about the location of the category
boundary and the most representative items. With regard
to the boundary, we considered three measures derived
from the participants’ responses: initial implicit, final im-
plicit, and explicit. To estimate implicit beliefs about the
location of the boundary between categories, each partici-
pant’s categorization judgments were fit to logistic func-
tions. Assignment of a stimulus to the wide island was
coded as 1, assignment to the thin island as 0. The point
at which the estimated logistic function crossed 50% was
taken as the implicit category boundary. Each participant
in the experimental condition responded to two sets of
grid stimuli, thus generating two implicit boundary judg-
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ments: initial and final. As participants in the baseline con-
dition did not experience the two Gaussians, only a single
initial implicit boundary was calculated in this condition.
Finally, participants in the baseline and experimental con-
ditions also made explicit judgments about the location of
the boundary. To assess participants’ beliefs about the
most representative members of each category, we simply
took their explicit judgments expressed using the slider.
These measures of beliefs about category structure were
then compared to the boundary and representativeness
landmarks from the labeled and unlabeled distributions.

2.2. Results and discussion

Participants’ implicit category boundaries in the base-
line condition did not differ significantly from the labeled
boundary, t(23)=.90, ns (see Fig. 3). Participants’ explicit
estimates of the boundary in this condition also did not dif-
fer from the labeled or the implicit boundary, t(23)=1.8,
t(23) = 2.0 respectively, both ns. Finally, participants’ esti-
mates of the most typical Pitolan and AinaKanu stimuli
in the baseline condition were located near to, and did
not differ significantly from, the two labeled items with
which they were presented, both t(23) < 1, ns. In general,
participants in the baseline condition drew reasonable
conclusions following the brief supervised training: the
two labeled items were representative of their classes
and the boundary between classes lay about midway be-
tween them.

In contrast, the implicit and explicit category bound-
aries observed in the experimental condition did change
after experience with unlabeled examples (see Fig. 2). Fol-
lowing experience with the unlabeled bimodal distribu-
tion, both the implicit and explicit category boundaries

Baseline Initial (right)

were significantly different from the labeled boundary in
the direction of the distribution boundary (for the final im-
plicit boundary estimates, mean difference = 18.1 pixels,
t(28)=3.8, p<.001; for the explicit boundary estimates,
mean difference = 22.3 pixels, t(28) = 7.0, p <.0001).

The shift in category boundaries occurred very early in
the unsupervised phase. Recall that the first 37 examples
spanned the full range at 5-pixels intervals (presented in
random order), allowing us to estimate participants’ initial
category boundaries. The most dramatic boundary shift
happened during this initial grid exposure (mean differ-
ence = 13.8 pixels, 76% of the difference observed in the fi-
nal implicit category boundary). One implication of this
rapid shift is that participants’ implicit beliefs about the
category boundary must be shaped partly by information
about the range of the stimuli in the domain. During the
initial grid exposure, participants in the experimental
group received no information about the frequency distri-
bution of unlabeled examples, yet category boundaries still
shifted closer to the middle of the stimulus range. In fact
this early shift was large enough that, although the implicit
boundaries continued to move following subsequent expo-
sure to the frequency distribution, this added effect was
not significant (mean difference between initial and final
implicit boundaries = 4.2 pixels, t(28)=1.1). Only the
explicitly estimated boundaries were significantly shifted
relative to the initial implicit boundary, t(28)=3.0,
p <.01. From this experiment, then, it is unclear whether
the observed effects arise solely from the range of unla-
beled items, or whether the frequency distribution also
matters. Indeed, because we did not anticipate this strong
effect of range information, Experiment 1 was not designed
to adjudicate this question—in these stimuli the distribu-
tion boundary (125) was very near the midpoint of the

Baseline Explicit (right)

Experimental Initial (right)

Experimental Final (right)

Experimental Explicit (right)

Left Labeled Boundary

Baseline Initial (left) |
Baseline Explicit (left) |
Experimental Initial (left)

Experimental Final (left)

Experimental Explicit (left)

90 100 110

Right Labeled Boundary

120 130 140 150 160

Stimulus Width (pixels)

Fig. 3. Results from Experiment 1. Vertical lines indicate labeled category boundaries, from supervised phases. Bars indicate mean boundaries estimated
from participants’ responses to Initial and Final grid items, and mean explicit boundaries from participants’ ratings. Right and Left labeled conditions are
presented separately. Horizontal lines indicate one standard error +/— in boundary estimates or ratings.
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stimulus range (110). Experiment 2 thus uses a different
distribution in order to distinguish these effects.

Judgments of the most typical example of each category
were also affected by the unlabeled examples. Recall that
the labeled items appeared on either side of one mode in
the unlabeled distribution. Of these two items, one always
fell between the two peaks, and hence was closer to the
other mode. We will refer to the category denoted by this
item as the inconsistent category. The other, consistent
category had labeled items relatively near one of the
modes of the distribution. For the consistent category,
judgments of the most typical item aligned well with the
location of the labeled item. Though the mean estimate
across participants was shifted significantly away from
the labeled item and toward the nearest mode in the unla-
beled distribution t(23) = 2.3, p < .05, this effect was driven
by two outlying participants whose estimates were more
than two standard deviations from the mean, t(21)= 1.6,
ns with outliers excluded. Even including the outliers, the
estimate of the most typical member of the consistent cat-
egory did not differ significantly from the corresponding
judgment from the baseline condition, t(52)=.02, ns. For
the inconsistent category, however, judgments of the most
typical member were shifted very strongly in the direction
of the far mode (the mean difference from the labeled item
was 41.7 pixels, t(28)=8.3, p<.001). Thus judgments of
the most typical category members were strongly influ-
enced by exposure to the unlabeled data.

The general conclusion from Experiment 1 is that unla-
beled examples do strongly influence both the implicit and
explicit conclusions people draw about category structure.
This result is consistent with earlier demonstrations of
semi-supervised learning (Zhu et al.,, 2007) but extends
this work by looking at a situation in which the labeled
and unlabeled examples suggest very different conclusions
about category structure.

One illustration of the magnitude of this effect is how
the labeled items were categorized before and after expo-
sure to unlabeled items. More than half of the participants
in the experimental condition (16 of 29) changed their
decisions about the category membership of one of the
training items during the unsupervised phase. For exam-
ple, the stimulus that initially defined the large island
was eventually assigned to the small island after exposure
to unlabeled data. Almost all of those who changed (14 of
16) did so after exposure to just the 37 range items. Effec-
tively, many participants rapidly unlearned the original
boundary and ended up mis-classifying the labeled items
from the supervised phase.

Given these dramatic changes in categorization deci-
sions, one might wonder whether the supervised experi-
ence has any lasting effect on participants’ beliefs about
category structure. Perhaps the initial supervised training
merely allows the learner to associate one label with one
direction of the dimension of interest and the other label
with the other direction, and all subsequent learning is dri-
ven by structure in the unlabeled distributions. Put differ-
ently, perhaps the participants were doing fully
unsupervised learning with the unlabeled data, and were
only using the supervised training to figure out which label
goes with which mode. Perhaps exposure to the unlabeled

data completely erases any trace of the initial supervised
learning.

If unlabeled data come to dominate category represen-
tations, then participants who received labeled items cen-
tered on the left mode would end up with the same beliefs
about category structure as those who received labeled
items centered on the right mode. Despite starting with
quite different labeled examples, the two groups received
exactly the same unlabeled examples. An ANOVA with la-
bel condition (left-shifted, right-shifted) as a between-sub-
jects variable and boundary estimate (initial, final) as a
within-subjects variable revealed a main effect of label
condition, F(1,27)=11.8, n = .30, p <.005, with no main
effect of boundary estimate and no interaction. Partici-
pants in the right-shifted and left-shifted label conditions
had different implicit category boundaries for both the ini-
tial and the final grid items, F(1,43)=12.4, p <.005, and
F(1,43)=6.0, p <.05, respectively, suggesting a persistent
effect of the brief supervised experience even after 411
unlabeled trials. On the explicit measures of the most typ-
ical instances and of the category boundary, however, the
left and right labeled conditions did not differ (all
t(27) < 1).

In summary, people do change their category represen-
tations in response to unlabeled examples. The results of
Experiment 1 suggest that these changes happen fairly
rapidly and may be quite dramatic. Although unlabeled,
these examples do carry information about the range of
the stimuli and about the frequency distribution of stimu-
lus values. Participants’ category boundaries were influ-
enced by unlabeled examples very quickly in the task,
after exposure only to range information. Category bound-
aries were shifted toward the midpoint of the stimulus
range relative to the training examples. It was less clear
from Experiment 1 whether participants’ behavior was
influenced by the frequency distribution of unlabeled
examples. One limitation of Experiment 1 was that the
midpoint of the stimulus range was very close to the
trough in between the two Gaussian distributions. That
is, the “natural” boundary in the distribution was very
close to the middle of the range. To test whether category
representations are affected by the distribution, as well as
or instead of the range, we need to use a different
distribution.

3. Experiment 2

Experiment 2 had two goals. The first was to determine
whether participants are sensitive to both the distribution
and the range of the unlabeled distribution. Thus in this
experiment the unlabeled examples were drawn from a
mixture of two Gaussian distributions situated so that
the trough between peaks was fairly distant from the mid-
point of the range. As before, participants first completed a
supervised learning phase with two labeled items; how-
ever in this case the two items were chosen so that the
midpoint between them (the labeled boundary) lay be-
tween the midpoint of the range and the trough in the
unlabeled distribution. If the range of the unlabeled exam-
ples has more influence than the density of the unlabeled
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distribution, then the category boundary should shift away
from the trough and toward the midpoint. If the boundary
is more influenced by the density of the distribution than
the range, it should shift away from the midpoint and to-
ward the trough.

The second goal of Experiment 2 was to assess whether
participants retain an accurate memory of the two labeled
items after the unlabeled experience. In Experiment 1 we
saw that participants judged the most typical member of
the inconsistent category to be quite different from the
one labeled member of the category they had previously
viewed. This tendency may arise because the participant’s
memory of the labeled item itself has changed following
exposure to the unlabeled distributions. Alternatively, it
may be that participants remember the labeled item quite
well but have come to realize that this item is not very rep-
resentative of its category. To adjudicate these hypotheses,
we added two additional questions to the explicit testing
phase at the end of the experiment. In addition to asking
participants to indicate the typical Pitolan and AinaKanu
women and the boundary between them, we also asked
them to reproduce as accurately as possible the two la-
beled items viewed at the beginning of the experiment.

3.1. Method

3.1.1. Participants

Eighteen undergraduate students at a large mid-wes-
tern university participated in the study in order to receive
extra credit in their Psychology classes.

3.1.2. Design and procedure

This experiment exactly replicated the experimental
condition of Experiment 1 with two exceptions. First, the
two labeled items and the range of the unlabeled distribu-
tion were altered. Specifically, unlabeled stimuli ranged
from 20 to 250 pixels in width, reflecting a 50 pixels range
increase from Experiment 1. This change resulted in 47
grid stimuli (instead of 37), and shifted the midpoint of
the range to 135 pixels instead of the 110 pixels midpoint
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2, the two Gaussians had modes of 85 and 135, with a
trough at 110. The two labeled stimuli presented during
the supervised experience were at 96 and 150 pixels. Thus
the labeled boundary was at 123 (midway between 96 and
150), the midpoint of the full range was larger than this va-
lue (135), and the trough between modes was smaller
(110). The second difference from Experiment 1 was that,
after estimating the typical Pitolan, AinaKanu, and the
boundary, participants adjusted a slider to show the origi-
nal Pitolan and AinaKanu women observed at the begin-
ning of the experiment.

3.2. Results and discussion

In contrast to Experiment 1, participants’ initial cate-
gory boundaries, as estimated from the first grid items,
did not differ from the labeled boundary, Mean=119,
t(17) = 1.2 (see Fig. 4). Relative to Experiment 1, the labeled
boundary was closer to the range midpoint to begin with.
For example, in the Right-shift condition of Experiment 1
the distance from labeled boundary to midpoint was
25 pixels. In Experiment 2 this distance was 13 pixels.
Boundaries may not have changed so quickly in Experi-
ment 2 because the midpoints of the labeled and unlabeled
ranges were more similar. Final implicit boundaries were
significantly different than initial implicit boundaries,
t(17)=3.5, p<.01, indicating that exposure to the fre-
quency distribution had an effect over and above exposure
to the range.

The final implicit category boundaries (estimated fol-
lowing experience with the bimodal distribution) did differ
from the labeled boundary, t(17)= 3.1, p <.005. Critically,
the difference was in the direction of the trough between
the distributions and away from the midpoint of the range.
The label boundary was smaller than the middle of the
range to begin with, and the implicit boundary became
even smaller after exposure to the unlabeled distribution.
The mean final implicit boundary was significantly less
than (thinner than) the midpoint, t(17)=5.3, p <.001 but
not significantly different from the trough between the dis-

in Experiment 1 (see Fig. 4 for illustration). For Experiment tributions, t(28)=-.8. Participants’ explicit boundary
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Fig. 4. Distributions and Results from Experiment 2. Vertical lines indicate objectively delined (potential) category boundaries: the trough between the two
distributions, the label boundary, and the midpoint of the stimulus range. Bars indicate mean boundaries estimated from initial and linal grid items, and
mean explicit boundary ratings. Horizontal lines indicate one standard error +/— in boundary estimates or ratings.



114 C.W. Kalish et al./Cognition 120 (2011) 106-118

judgments showed the same pattern. The mean explicit
boundary was significantly smaller than the range mid-
point, t(17) = 3.8, p<.05, but not from the trough of the dis-
tribution t(17) = .3.

Judgments of typicality again showed the effect of expe-
rience with unlabeled examples. The most typical thin-is-
lander (67) was significantly thinner than the labeled
item for that category (96), t(17) = 7.0, p <.001. The typical
wide-islander (163) was not reliably wider than the la-
beled item (which was already on the extreme edge of
the corresponding mode, 150), t(17) = 1.6, p = .06. The esti-
mated typicalities did not simply reflect the modes of the
unlabeled distribution. Rather there was a kind of carica-
ture effect in which the most typical items were judged
to be more extreme than the modal unlabeled items. The
mean judgment for the most typical thin category stimulus
was significantly smaller than the mode of the thin distri-
bution, t(17) = 4.4, and the mean judgment for the typical
wide category stimulus (163) was wider than the mode
of the wide distribution (135), t(17) = 3.4, both p <.005.
Note that typicality was only measured after exposure to
the distribution (in the explicit judgments): There was no
measure of typicality after the initial grid alone. Thus, un-
like category boundaries, we cannot determine whether
typicality judgments were sensitive to the range or the dis-
tribution, or both.

Interestingly, participants’ memory for the original la-
beled items showed a remarkably similar pattern. The
example of the thin category was remembered as being
significantly thinner (73) than it actually was (85),
t(17)=4.6, p <.005, and the wider labeled example (150)
was remembered as somewhat though not significantly
wider, mean =157, £{(17)=.8, ns. Strikingly, memory for
the two labeled items did not differ significantly from esti-
mates of the most typical items in each category, both
t(17) < 1.5, ns—suggesting that memory for the labeled
items is altered by the unlabeled experience. Of course, it
is possible that memory would have changed the same
way without the unlabeled experience: There was no con-
trol comparable to the baseline condition in Experiment 1.
However, it seems unlikely that memory drift would so
closely match typicality judgments.

In Experiment 2, the two labeled examples fell on dif-
ferent sides of all relevant landmarks from the labeled
and unlabeled distributions: they received different labels,
were on either side of the trough between the Gaussian
distributions, and were on either side of the midpoint of
the stimulus range. Thus unlike Experiment 1, the category
structure suggested by the supervised experience was
roughly consistent with that suggested by the unlabeled
distribution. Nonetheless, almost half of the participants
(N = 8) ended up mis-classifying one of the original labeled
examples. Only one participant ended up with a boundary
that was too high (classifying both labeled examples as
thin), while seven ended up with a boundary that was
too low (classifying both labeled examples as wide). These
categorization errors are consistent with the view that the
mental category boundary moves toward the trough with
some degree of noise so that the membership of the la-
beled item nearest the new boundary becomes uncertain
despite the previous supervised experience.

The results of Experiment 2 confirm and extend the
findings from Experiment 1. In general, both experiments
demonstrate that unlabeled examples affect people’s cate-
gory representations. Whereas Experiment 1 suggests that
people are sensitive to the range of unlabeled items, Exper-
iment 2 demonstrates that the density of the distribution
also has a strong influence on category judgments: Bound-
aries tend to shift toward the trough of the distribution
even when this differs from the location of the range mid-
point. Experiment 2 also confirmed that explicit beliefs
about category structure are influenced by unlabeled expe-
rience, and further showed that memory for labeled items
can be distorted through exposure to unlabeled items.

4. Experiment 3

Experiments 1 and 2 showed that people’s beliefs about
category structure can be strongly influenced by the distri-
bution of unlabeled items to which they are exposed, with
the consequence that learners can sometimes draw conclu-
sions about category membership that directly contradict
their supervised experience. In Experiment 3, we consider
whether these tendencies can lead groups of individuals to
collectively form shared incorrect beliefs about category
structure. The key idea is that individuals living in a com-
mon environment are likely to be exposed to similar distri-
butions of wunlabeled experiences. The preceding
experiments suggest that, by virtue of this shared experi-
ence, individuals who receive very different supervised
learning experiences should have their beliefs about cate-
gory structure “reshaped” by unlabeled experience in sim-
ilar ways—so that, despite extreme differences in the
explicit feedback they receive, they may, following experi-
ence with unlabeled items, come to agree on certain as-
pects of category structure.

In Experiments 1 and 2, the learner only rarely received
definitive information about a woman’s island of origin—
there were only two labeled examples—and each partici-
pant received the same two labeled examples. Imagine,
however, a different case in which the observed informa-
tion about each item—the width of the silhouette—is com-
pletely irrelevant to determining the correct category.
Suppose, for instance, that each learner views one Aina-
Kanu and one Pitolan woman, but that each example is
sampled completely at random from a uniform distribu-
tion on the range, with each learner viewing a different
random sample. From these supervised learning experi-
ences, different individuals will form widely variable be-
liefs about the characteristic AinaKanu and Pitolan
women and the boundary between them. With exposure
to the unlabeled items, however, each individual should
“shift” her mental category boundary away from the initial
labeled points and toward the trough/midpoint of the dis-
tribution. Similarly, representations of most typical island-
ers should shift from the labeled items toward the two
modes of the distribution. Since the distribution landmarks
are all the same for each learner, one might initially ob-
serve considerable disagreement among learners following
the supervised experience, but increasing agreement
across learners the boundary and most characteristic
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examples with increasing exposure to the unlabeled items.
These are the predictions tested in Experiment 3.

4.1. Methods

4.1.1. Participants

Twenty-four undergraduate students at a large mid-
western university volunteered for the study in order to re-
ceive extra credit in their Psychology classes.

4.1.2. Design and procedure

Experiment 3 was identical to the experimental condi-
tion of Experiment 1 with the exception that in the super-
vised phase each participant saw a randomly selected pair
of examples sampled from a uniform distribution over the
range. Pairs were chosen with the constraint that the two
stimuli be at least 20 pixels apart and that neither member
of the pair be less than 30 pixels from the maximum or
minimum of the range. The implicit boundary between
categories was assessed with an initial set of “grid” items
presented immediately following the supervised learning
phase, and again with a final grid following exposure to
the bimodal distribution of unlabeled items. Explicit be-
liefs about the boundary and about the most representa-
tive Ainakanu and Pitolan were assessed at the end of the
experiment using the method from Experiments 1 and 2.

4.2. Results and discussion

The primary question in Experiment 3 is whether, fol-
lowing very different supervised learning experiences,
individuals will come to agree about the location of the
category boundary and characteristic examples after
encounters with a common set of unlabeled instances. In
contrast to Experiments 1 and 2, the absolute magnitude
of each individual’s category boundary is of less interest
than is the variance across individuals. Fig. 5 presents
two measures of dispersion. The horizontal bars indicate
mean differences from the trough in the unlabeled distri-
bution. Error bars represent the standard deviations of
these boundaries. From the figure it is clear that, despite

Distance to Trough
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Fig. 5. Mean absolute distances of boundaries to the trough in the
distribution. Label bound is the mean between the two labeled examples.
The bar represents the mean value across all participants. Initial and final
bounds are mean estimates from grid stimuli. The explicit boundary is the
mean rating of the category boundary. All error bars indicate one
standard deviation.

wide variation in the initial labeled boundaries, individuals
increasingly come to agree on the location of the boundary
following exposure to the unlabeled distribution.

To formally test this observation, we compared the var-
iance in category boundaries both before and after unla-
beled experience. The Morgan-Pitman test is based on
VarY — VarX = Covar(X — Y, X+Y). Thus the test asks
whether there is a significant correlation between the
sums of the scores and the differences of the scores. For
example, to assess the change in variance from initial to fi-
nal estimates we sum the two scores for each participant,
and take the difference of the two scores for each partici-
pant. We then compute the covariance between these
two sets of scores (sums and differences). The variance in
the training boundaries was 1011. The variance in both ini-
tial and final boundary estimates was reduced signifi-
cantly, 442; r=.54 and 408; r=.51 respectively, both
p <.01. The variance in the explicit category boundary rat-
ings was much lower than the variance in the training
boundaries, 199; r = .83, p <.001. Indeed, pairwise compar-
isons reveal that variance was reduced in two steps: Train-
ing > Initial, Final > Explicit.

In addition to becoming less variable, the location of
implicitly and explicitly assessed category boundaries also
changed. For each individual, we computed the distance of
their initial, final, and explicit boundary estimates to the
trough in the unlabeled distribution. (Note that with this
distribution of unlabeled examples the trough and mid-
point of the range are very similar.) With increasing expo-
sure to the unlabeled items, boundary estimates moved
increasingly away from the labeled boundary and toward
the trough between the peaks of the unlabeled distribu-
tion. Initial boundary estimates were significantly closer
to the trough than were the labeled boundaries,
t(23)=2.5, p <.05, demonstrating the effect of exposure
to the full range of unlabeled items (as in Experiment 1).
Initial and final estimates did not differ in distance,
t(23) = .3. Finally, explicit boundary estimates were signif-
icantly closer to the trough than were initial implicit
boundary estimates, t(23)=3.3, p <.005. In other words,
each individual’s boundary estimates moved reliably away
from his or her idiosyncratic label boundary and toward
the trough in the unlabeled distribution. Because this dis-
tribution was common across individuals, these shifts pro-
duced increasing agreement as to the location of the
boundary.

As in Experiment 1, boundaries often shifted so that the
original labeled items changed class after the unlabeled
experience. Twenty-one of the participants received train-
ing boundaries that were significantly off-center (i.e., at
least 10 pixels away from the range midpoint). Of these
21 participants, 12 made category boundary ratings that
placed the two labeled items in the same category.

Finally, estimates of the most representative member of
each class also changed in systematic ways. Though the
mean typicality judgments did not differ significantly from
the mean of the corresponding labeled points, there was
considerably greater agreement across individuals. The
stimuli identified as the most typical or representative in-
stances of their respective categories (after exposure to
unlabeled examples) were significantly less variable than
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the training items participants saw, variances of 1202 vs.
461 for the “wider” category, and 1463 vs. 365 for the
“thinner”, both t(22) > 2.3, p <.05, Morgan-Pittman tests.
Thus participants showed substantially greater agreement
about the characteristic width of the thinner and wider
islanders than warranted by their direct supervised
experience.

Note that the consensus achieved by participants in
Experiment 3 had a very interesting quality. Participants
generally came to agree on the boundary between the is-
land with the thinner women and the island with the
wider women. They also came to agree on the typical sizes
for thin-island and wide-island women. They disagreed,
however, about which island was which. Because labels
were randomly assigned to training items, half the partic-
ipants thought that the AinaKanu women were wide and
the Pitolan women were thin, and half the participants
thought just the opposite! The participants actually ended
up with two distinct, even opposing, stereotypes. Based on
the unlabeled experience they all agreed that there was a
wide and a thin island, and agreed on the size of the differ-
ence. However, based on the labeled experience, they fell
into one of two camps about which label indicates which
size. Although this may seem to be a very incongruous
(and even unrealistic) state of affairs, it may actually be
just the kind of in-group/out-group belief observed in the
social psychological literature. We all agree that there is
a group of nice/smart/beautiful/moral people and a group
of mean/ignorant/ugly/evil people. We just disagree about
which group is mine and which group is yours.

5. General discussion

In three experiments we have shown that the beliefs
people form about category structure are strongly influ-
enced by the unlabeled instances they encounter. The
baseline condition of Experiment 1 showed that, immedi-
ately following supervised learning with a single instance
from each of two categories, participants (i) acquire mental
category boundaries near the midpoint between the la-
beled items and (ii) judge each labeled item to be represen-
tative of its category. After categorizing many new items
without feedback, however, these beliefs change: Mental
category boundaries shift toward the midpoint of the range
of unlabeled items (Experiment 1) and toward low-density
regions between modes of the unlabeled distribution
(Experiment 2). This shift occurs quite rapidly, and is suffi-
ciently robust that many participants end up making cate-
gorization decisions that actually violate their supervised
learning experience. Finally we have shown that individu-
als who have quite different supervised learning experi-
ences but are exposed to a common set of unsupervised
experiences (Experiment 3) can come to agree on aspects
of category structure that are inconsistent with their
supervised experience. In Experiment 3, there was no true
category boundary between Ainakanu and Pitolan women:
examples of these categories were sampled from the same
random distribution. Nevertheless, after exposure to the
unlabeled distribution, participants largely agreed that
one island mainly had wide women and one mainly had

narrow women; they agreed on the typical width of wo-
men from each island; and they agreed as to the location
of the boundary between the categories. The simple exam-
ple illustrates one mechanism by which groups of people,
despite quite variable supervised feedback, can converge
on incorrect beliefs about categories.

5.1. Relationship to other work

The results of the three experiments support and ex-
tend prior research on semi-supervised learning. Zhu and
colleagues (2007) showed that category boundaries shift
in response to unlabeled data. In this case, however, the la-
beled and unlabeled distributions were roughly consistent
with one another. Experiments 1 and 3 suggest that when
the discrepancy between labeled and unlabeled data is
high, people’s boundaries shift very quickly and dramati-
cally, leading to re-categorization of even the previously-
labeled items. Experiment 2 closely replicates the Zhu
et al. results.

In contrast to the results of the current study, Vandist
and colleagues (2008) have argued that unlabeled exam-
ples do not influence category boundary learning. One pos-
sible reason for this discrepancy is the relative frequencies
of labeled and unlabeled examples: Vandist et al. provided
labels on 50% of their learning trials, and so potentially lim-
ited the impact of unlabeled distributions. There are, how-
ever, other differences between the studies that might also
explain the seeming contradiction. Vandist’s paradigm re-
quired participants to learn an “information integration”
boundary, that is, an oblique boundary in 2d stimulus
space with psychologically separable dimensions. Such
tasks are often thought to require extensive supervised
experience (Ashby, Queller, & Berretty, 1999). We further
note that, in Vandist’s experiment, the unlabeled examples
did not carry any additional information about the range or
distribution of stimulus values beyond that provided by
the labeled items. The unlabeled items were drawn from
exactly the same distribution as were the labeled items,
and the midpoint of the stimulus values and the trough
in the distribution of examples coincided exactly with
the labeled category boundary. Categorization of the unla-
beled examples would therefore have reinforced the la-
beled boundary, rather than shifting it as in the current
experiments. Vandist et al.’s work thus allowed these
authors to look only at the rate at which the boundary
was learned, and not at effects on the category structure
acquired.

One of the implications of the current results is method-
ological. Zaki and Nosofsky (2004) note the possibility of
what they termed “learning during transfer.” In a typical
categorization experiment, the subjects are taught a dis-
tinction (using labeled examples) and then asked to cate-
gorize a set of “transfer” stimuli (without label feedback)
in order to measure what was learned from the training.
The measures intended to diagnose category representa-
tions may in fact change such representations (see Zhu
et al, 2010, for further evidence). The current study con-
firms that learning can happen during transfer. Although
it is difficult to quantify, category representations seem
to change rapidly and significantly. The current study used
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a very brief category learning phase (only 10 trials) and the
criteria for categorization decisions were very clear (stim-
uli varied along a single dimension). These features of the
design may have contributed to the influence of unlabeled
examples. We might expect more extensive supervised
experience to reduce the influence of unlabeled items.
Also, in our study the unlabeled examples varied only on
the dimension relevant to the category boundary. With
more complex stimuli the variation in the unlabeled exam-
ples may be less obvious, and thus have a smaller effect on
category representations (see Rogers, Kalish, Gibson, Harri-
son, & Zhu, 2010). Finally, the current study used a blocked
design in which all training occurred before all unlabeled
experience. It is interesting to speculate whether a small
number of labeled examples interspersed with the unla-
beled examples would be sufficient to maintain the trained
category representations. These considerations provide
directions for future research on semi-supervised learning,
as well as hypotheses about minimizing the effects of
learning during transfer.

5.2. Strengths and weaknesses of semi-supervised learning

We began the introduction with a suggestion that semi-
supervised learning may be one mechanism by which peo-
ple form incorrect beliefs about categories, and the current
results support this hypothesis. It should be clear, how-
ever, that semi-supervised learning can also greatly benefit
category learning in many cases. Whether semi-supervised
learning leads to correct or incorrect beliefs about catego-
ries depends on the relation between the distribution of la-
beled and of unlabeled observations. If category labels tend
to apply across contiguous high-density regions of the
unlabeled feature space, and category boundaries tend to
follow low-density regions in this space, then semi-super-
vised learning will lead to correct beliefs even when labels
are very sparse. Only when category structure conflicts
with unlabeled structure and labeled experience is rare
will semi-supervised learning fail.

In many natural domains, it is probably true that cate-
gory labels and boundaries map fairly well onto the struc-
ture of unlabeled experience. Rosch et al. (1976) famously
argued, for instance, that mental category representations
carve the world at its joints. To the extent that this is true,
semi-supervised learning will benefit concept acquisition.
Furthermore, common misconceptions about natural cate-
gories seem to occur in cases where the key assumption
fails. For instance, the mistaken belief that bats lay eggs
probably occurs because bats share many salient proper-
ties with birds and few with familiar mammals, and be-
cause there are many properties held in common
amongst birds and amongst mammals, but relatively few
shared between these groups. In other words, in our unla-
beled experience we encounter many bird-like things and
many mammal-like things, but few things in between—
there is a “trough” in the observed feature space between
birds and mammals. Moreover, most people get little direct
experience showing them which items lay eggs and which
do not (i.e., supervised experience). Thus, although the true
boundary between egg-laying and live-bearing animals
would fall between the bats and the birds in a multidimen-

sional feature space, the semi-supervised learner will place
the boundary at the trough between birds and mammals,
and form incorrect beliefs about bats.

Of course, standard models of similarity-based infer-
ence make similar predictions. If bats are similar to known
egg-laying animals and dissimilar from known live-bearing
animals, then bats will be assumed to be egg-layers. Things
that cluster together in known ways will be assumed to
cluster together in unknown ways. Semi-supervised learn-
ing does not involve unique mechanisms. Rather the point
is to illustrate some implications of the standard processes
of similarity-based learning. Specifically, the intuition that
unknown properties will be distributed like known ones
(things similar in known ways will be similar in unknown
ways) is not always correct. The perception of similarity-
based structure can override direct experience that the
true distribution of the unknown feature is orthogonal to
the known features. The reliance on the predictive value
of known/observable clusters can introduce error into
learned classifications.

Errors from semi-supervised learning may be reduced
in a variety of ways. Extensive supervised experience, or
very strong weighting of labeled items, will overcome the
tendency to conform to the distribution of unlabeled items.
Also, learning about new properties of objects can effec-
tively shift the distribution of unlabeled items in ways that
would allow semi-supervised learning to benefit category
acquisition. For instance, learning about the ways that bats
are similar to mammals—having fur, similar skeletal struc-
ture, expressing milk, and so on—will shift the bat away
from the bird and toward the mammals in the unlabeled
feature space, making it less likely that semi-supervised
learning will lead to an incorrect conclusion.

Though these examples focus on misconceptions about
natural categories, we believe that other conceptual do-
mains may be more susceptible to these kinds of effects—
in particular, domains where the unlabeled distribution is
more likely to conflict with the categories we need to learn,
and where direct experience of the true category label is
rare. Social concepts might constitute one such domain.
There is considerable structure in our everyday experience
with other individuals—on the basis of properties we can
readily observe (unlabeled experience), people fall natu-
rally into clusters that roughly reflect their age, race, sex,
socioeconomic status, attractiveness, etc. Yet these clumps
in the unlabeled distribution may not be especially useful
for drawing inferences about their unobserved proper-
ties—which people are smart, which are violent, which
are good drivers, which are lazy, which are ethical—and
we may get relatively little direct experience of these
traits. Social stereotypes often seem to involve using clus-
ters apparent in the unlabeled distribution to govern gen-
eralization about these infrequently-observed traits (e.g.
women are bad at math, Latinos are lazy). To the extent
that such stereotypes reflect incorrect beliefs, semi-super-
vised learning may provide one mechanism for under-
standing how they come to be formed in the first place.

One limitation of the current work is that it employed a
very simple category-learning setting in which items var-
ied on just one dimension and were assigned to just two
categories. In real-world category learning, of course, items
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vary in many different feature dimensions and may be as-
signed to many different categories. The current work was
useful for illustrating how and why semi-supervised learn-
ing might lead to incorrect beliefs, but to assess the ecolog-
ical validity of these ideas future work will need to employ
multidimensional stimuli assigned to a variety of different
categories.

6. Conclusion

The possibility that humans learn from semi-supervised
experience has significant implications both for theories of
human inductive inference and for the methods we em-
ploy to assess these abilities. Though we have investigated
semi-supervised learning as a mechanism for understand-
ing the occasional failures of human categorization, in
most natural domains it seems likely that semi-supervised
learning will more often lead to positive outcomes. So long
as the category structure to be learned aligns well with the
distribution of unlabeled examples, semi-supervised learn-
ing of the kind we have studied here will improve perfor-
mance. It is likely that this assumption does hold for
many of the inductive inference problems we are called
upon to solve (see Rosch et al., 1976). The difficulty arises
in those cases where natural discontinuities in encoun-
tered examples do not actually reflect the category bound-
aries we are called upon to learn, and where supervised
experience is largely unavailable. The current study sug-
gests that, under these conditions, category representa-
tions can be strongly distorted by the unlabeled
examples. This mechanism may be especially useful for
understanding incorrect beliefs in particular conceptual
domains, such as social stereotyping.
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