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Two experiments explored children’s and adults’ use of examples to make conditional pre-
dictions. In Experiment 1 adults (N=20) but not 4-year-olds (N=21) or 8-year-olds
(N =18) distinguished predictable from un-predictable features when features were par-
tially correlated (e.g., necessary but not sufficient). Children did make reliable predictions
given perfect correlation. In the context of categorization and property projection in Exper-
iment 2, children of both ages (both N=31) and adults (N = 30) did use partial correlation
in examples to make conditional predictions. However, predictions of category member-
ship given property possession were more reliable than were predictions of property pos-
session given category membership. Children generally showed good memory for
frequency information, but did not always use this information as the basis of predictions.
Results suggest that young children may have difficulty selectively using the relations they
observe in experience.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Infants and young children are able to learn patterns of
contingency and covariation in events they experience
(Aslin, Saffran, & Newport, 1998; Kirkham, Slemmer, Rich-
ardson, & Johnson, 2007; Xu & Denison, 2009). The current
study explores the features of experience that lead to
learning a correlation or contingency. What makes a corre-
lation easy or difficult to detect? What sorts of contingen-
cies do children learn? The current study focuses on
conditional predictions. Conditional prediction is the
expectation of one feature given, or conditional upon, some
other(s). Categorization (e.g., if it barks is it a dog?) and
property projection (e.g., if it is a dog, will it bark?) are
kinds of conditional predictions. Within the developmental
literature there has been substantial debate about the role
of theoretical knowledge vs. statistical information in chil-
dren’s categorization and inference (Gelman & Kalish,
2006; Rogers & McClelland, 2004; Sloutsky, 2003). How-
ever, this debate is best understood as questioning
whether children’s judgments involve theoretical knowl-
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edge in addition to statistical, not instead (Gelman & Med-
in, 1993). Most researchers agree that expectations about
barking given dog, and dog given barking, are somehow
reflective of encounters with barking and non-barking
dogs and non-dogs. But how do children use experience
of past examples to make predictions about novel cases?

One of the simplest, and most classic, specifications of a
prediction problem involves relations between two binary
variables. Such a problem can be represented in a 2 x 2
contingency table (see Table 1). The row and column head-
ings specify values of two feature dimensions (e.g., features
of a set of birds: Diet, either berries or bugs; and egg-type,
either brown or white). The cells of the table indicate fre-
quencies with which examples possessing combinations
of these feature-values are encountered (The cells are con-
ventionally labeled left-to-right, top-to-bottom as A, B, C,
D). We may ask what people learn from various frequency
distributions of examples. This approach is familiar from
the literature on association (Kao & Wasserman, 1993),
causal learning (Cheng & Novick, 1992), and probability
judgment (Schlottmann, 2001). Frequency distributions
also provide bases for conditional prediction: Will a bird
who eats berries lay brown eggs? Will a bird with white
eggs eat bugs?
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Table 1
Example of 2 x 2 contingency table illustrating frequencies of different
examples (combinations of features).

Berries Bugs
Brown 8 A 2B
White 2C 4D

In a recent paper, Girotto and Gonzalez (2008) explored
children’s use frequency information to make conditional
predictions. Girotto and Gonzalez presented children with
examples composed of two binary features (black and
white, squares and circles, akin to the structure in Table 1).
They asked two kinds of questions. Prior probabilities in-
volved judgments of marginal frequencies, predictions of
individual features. For example, from Table 1, is one more
likely to find a bird that eats berries or one that eats bugs?
Girotto and Gonzalez were particularly interested in judg-
ments of “posterior probabilities”, or conditional probabil-
ities. What if one knows the value of one feature and is
asked to guess the value of the other? For example, if we
know that a bird lays white eggs, is it more likely to eat
bugs or berries? In answering this question one has to se-
lect a sub-set of the exemplars to compare. Indeed with the
cell frequencies in Table 1 (like those used by Girotto and
Gonzalez) the answers to the prior and the posterior ques-
tions differ. Overall more birds eat berries, but among the
white-egged birds, more eat bugs. Girotto and Gonzalez
found that children as young as age four could correctly
answer the posterior question suggesting they were appro-
priately conditionalizing their comparisons.

Although Girotto and Gonzalez (2008) found evidence
that preschool-aged children did make the conditional
comparisons, the task seemed difficult. Despite working
with a small number of items (eight total) and having rep-
resentations of the cell frequencies visible throughout the
task, young children often responded at chance levels. Even
into second grade, children were answering incorrectly
about 40% of the time in some conditions. In some ways
the difficulty of the conditional prediction task is incom-
patible with other work showing that young children are
adept at making categorization judgments, and are quick
to learn to predict properties from category membership
(Gelman, 2003; Gelman & Kalish, 2006; Markman, 1989).
The way to address this apparent inconsistency is to ex-
plore what makes tasks easier or more difficult. How do
young children use frequency distributions to make condi-
tional predictions? The literature suggests four strategies,
four ways people may go about answering a conditional
prediction question given frequency information like that
shown in Table 1.

2. Strategies for conditional prediction

An early hypothesis, developed from Piaget’s theory,
held that young children focus on a single kind of exem-
plar, one cell in the table, because they are unable to coor-
dinate multiple representations (see Reyna & Brainerd,
1994 for review). In answering questions about the exem-
plars represented in Table 1, preschool-aged children

would focus on the berry-eating brown-egged birds be-
cause they are the most frequent, and essentially ignore
the frequencies in the other cells. This focus might lead
them to always expect berry-eating, a prediction in con-
trast to Girotto and Gonzalez’s conditionalizing results. In-
deed, the general consensus in the field is that young
children are not limited to attending to one cell at a time;
they do compare multiple cell frequencies when making
predictions (see Reyna & Brainerd, 1994; Schlottmann,
2001). However, it remains possible that modal exemplars
play an important role in children’s predictions. Perhaps
children will tend to make predictions consistent with
the features of the modal exemplar. Tasks are easier when
correct performance involves predicting the features
shown by the modal exemplar.

A second strategy is to focus on marginal frequencies, or
base-rates. From Table 1, most of the birds lay brown eggs,
and most eat berries. Following a base-rate strategy, a child
would tend to predict one of these two features. Girotto
and Gonzalez (2008) demonstrated that even preschool-
aged children are not limited to attending to marginal fre-
quencies; under some conditions they will consistently
predict the property with the lower base-rate. Girotto
and Gonzalez (2008) did not directly compare conditional
predictions involving high and low base-rate properties.
Thus it remains an open question whether children are
more likely to predict high base-rate features in condi-
tional prediction tasks. Perhaps such tasks are easier when
correct performance involves predicting the features with
the highest base-rates.

The third strategy is the “correct” one of calculating the
probability of one feature conditional on the other. This
strategy is based on the definition of a conditional proba-
bility: p(X]Y) = p(X and Y)/P(Y). Assuming that the frequen-
cies of observed exemplars and properties are the bases for
assignments of probabilities, then making a conditional
prediction involves computing the proportion of all exem-
plars having the given property who also had the to be pre-
dicted property. From Table 1, the probability that a bird
with white eggs eats berries is: C/(C + D) or 2/(2 + 4). Since
the current study concerns only binary properties, the
probability of the alternative outcome is always the com-
plement (e.g., p(bug|white) = 1—p(berry|white)). Exemplar
models of adult cognition suggest that people make just
this sort of comparison when asked for a conditional pre-
diction, albeit not always perfectly (Dougherty, Gettys, &
Ogden, 1999). As this strategy is the normative one used
to define correct responding, participants in a prediction
task will be successful to the extent they consistently se-
lect the property with the larger conditional probability.
Classically, the tendency to notice and respond to a differ-
ence depends on the magnitude of that difference (Luce,
1963). People will be more likely to select the property
with the greater conditional probability if that probability
is much larger than the alternative. For example, if p(ber-
ry|white) =.9 (vs. p(bug|berry)=.1) people will be more
consistent in predicting berry given white than they would
be if p(berry|white) = .55 (vs. p(bug|berry) = .45). Thus, the
prediction is that children will find tasks easier when they
involve large (rather than small) differences in conditional
probabilities.
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Finally, a fourth way of generating a conditional predic-
tion is to focus on the general association between two
variables. An association is a bi-conditional relation. In a
2 x 2 table, association is a function of the difference be-
tween the two diagonals: The more exemplars fall on only
one diagonal, the greater the association between the vari-
ables. In Table 1 there is an association between the vari-
ables of diet and egg color; brown and berries go
together, and white and bugs go together. Associations,
like modal exemplars, base-rates, and conditional proba-
bilities, could be used to make conditional predictions.
For example, participants in Girotto and Gonzalez’s study
could have made the correct posterior probability predic-
tion by attending to the association between features.
The association in Table 1 supports the prediction that a
bird with white eggs will eat bugs. Note, that even with a
strong association, the conditional probability of bugs gi-
ven white eggs need not be high, and could be less than
p(berry|white). The converse holds as well: A large differ-
ence in conditional probability does not mean there has
to be a strong association. This is because only two cells
contribute to a particular conditional probability, while
all four cells contribute to the association. Thus the fourth
hypothesis, that children use association to make condi-
tional predictions, is distinct from the previous three. This
hypothesis states that children will find tasks easier when
correct performance involves predicting features consis-
tent with the overall association between feature
dimensions.

Of course the four strategies are not mutually exclusive.
Children may attend to modal exemplars, base-rates, con-
ditional probabilities, and associations when making pre-
dictions. Moreover, there are clearly “non-statistical”
features that affect task performance, such as memory de-
mands and task content (e.g., intuitions about causal rela-
tions between features). Nonetheless, by presenting
different frequency distributions, it is possible to distin-
guish the different strategies or the degree to which the
different strategies drive children’s predictions. These
strategies are also of interest because of competing devel-
opmental hypotheses.

3. Developmental hypotheses

One developmental perspective, already mentioned, is
that children’s cognition moves from simple strategies to
more complex ones. In the context of the four prediction
strategies described above, the modal exemplar strategy
is often considered the simplest. Only one piece of infor-
mation is attended to; only one cell matters. The base-rate
and conditional probability strategies involve comparison
of two quantities (two marginal or cell frequencies). An
association involves coordinating all four cell frequencies.
On this view, association is the most complex strategy.

Evidence for the simple-to-complex developmental
hypothesis comes from Shaklee’s work on contingency or
causal learning (Shaklee & Goldston, 1989; Shaklee &
Mims, 1981; Shaklee & Paszek, 1985). Shaklee presented
children with stimuli like that described in Table 1. She
asked them for judgments of association (e.g., are white-

egg birds more/less/equally likely to eat bugs as brown-
egg birds?) or of causal relation (e.g., does eating bugs
cause brown eggs?). Both of these judgments are under-
stood to involve something like a comparison of on- and
off-diagonal frequencies (e.g., a phi-coefficient, or Ap, see
Cheng & Novick, 1990). Shaklee found that school-aged
children tended to use simple conditional probability to
make these judgments. For example, if p(brown|bug) was
high, children would assert there was a causal relation.
Shaklee’s data show that when asked a question that re-
quires comparison of four cells, children answer by com-
paring two. Children are more likely to attend to
conditional probabilities than to associations.

A different perspective on learning relations from exam-
ples comes from work on conditioning, especially, the ani-
mal learning literature (De Houwer, Vandorpe, & Beckers,
2005; Vadillo & Matute, 2007; Vadillo, Miller, & Matute,
2005). Here the hypothesis is that association learning is
basic; organisms are sensitive to patterns of covariation.
Yet it is also clear that humans, at least adult humans, are
able to learn and use other relations, such as conditional
probability. Vadillo and Matute (2007) suggest that the
conditional probability judgment requires a controlled,
higher-order, process of selective combination of associa-
tive information. As the conditional prediction requires
controlled processing, the expectation is that it would be
more difficult or later emerging developmentally.

Vadillo and Matute (2007) suggest that conditional
probability judgments are more complex because they in-
volve combining different associations. However, associa-
tive responding may be easier or apparent earlier than
conditional prediction because the latter requires more
selective processing. This perspective would be consistent
with fuzzy-trace theory which suggests that people form
a general, gist, impression of the relation between the fea-
tures, such as an association (Reyna, 2005). Children espe-
cially might have difficulty selectively encoding or using
specific representations to make different judgments. Note
that in terms of an association there are really only two
kinds of examples in the 2 x 2 table (see Table 1); exam-
ples in cells A and D support the (positive) association,
those in cells B and C weaken the association. The cells/
examples have the same implications for all judgments
based on the association. What is associated with brown
eggs? What is associated with eating bugs? A and D cells
support one answer; B and C cells the other. In contrast,
the cells have different significance for different condi-
tional predictions. If a bird lays brown eggs, what does it
eat? A-cell examples support berries, B-cell examples bugs,
with C-cell and D-cell examples either irrelevant, or some-
what supportive of berries and bugs (respectively) if base-
rates are considered. If a bird eats berries, what color are its
eggs? This question involves A compared to C. A plausible
“association-basic” hypothesis is that the selective and dif-
ferential usage of examples is difficult. Young children
would be expected to use association (A and D vs. C and
B) to make all conditional predictions.

There is both theoretical and empirical support for the
association-basic hypothesis. Models of probability judg-
ment include an expectation that people will base predic-
tive judgments on the wrong exemplars, consistent with
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an association (Dougherty et al., 1999). A classic result in
the adult literature is the “inverse fallacy” in which people
confuse evidence for p(x|y) with evidence for p(y|x)
(Dawes, Mirels, Gold, & Donahue, 1993; Villejoubert &
Mandel, 2002). The literature on conditional inference
(“if ... then” reasoning) often suggests a bias toward bi-
conditional interpretations, especially in children (Barr-
ouillet & Lecas, 2002). Finally, young children are reason-
ably good at comparing gambles (Acredolo, O’Connor,
Banks, & Horobin, 1989; Spinillo, 2002; see Reyna & Brain-
erd, 1994 for review). At least by age seven, children pro-
duce ratings or rankings of gambles, such as containers
with different numbers of red and blue marbles, which re-
flect the relative probabilities (e.g., of drawing a red mar-
ble). This kind of comparison involves a judgment of
difference in conditional probabilities, roughly an associa-
tion or correlation.! Interestingly when children are asked
to produce equivalent gambles (by adding marbles of one
color to an urn to match the proportion in another urn) they
do not reliably succeed until about age 13 (Falk & Wilkening,
1998). One interpretation is that the adjustment task re-
quires a precise (e.g., numerical) representation of probabil-
ity while the rating tasks call on more intuitive or qualitative
representations. However, it is also suggestive that the
adjustment task requires attending to a single “cell” of the
2 x 2 problem (i.e., “How does one adjust A to make A/
B=C/D?").

The literature presents two broad views of the develop-
ment of conditional prediction. Children may start simple,
by attending to or using only a sub-set of the relevant
information, and build to more complex judgments that
integrate more and more of the evidence. Alternatively,
children may start with a general, holistic, representation
of relations in the evidence (e.g., association) and develop
abilities to tune or alter their use of evidence in response
to specific task demands. The critical predictions of the
two hypotheses concern the relative ease or salience of
the associative and conditional probability strategies for
making conditional predictions. The holistic-to-selective
hypothesis predicts that children will tend to use the de-
gree of association between two variables to make condi-
tional predictions. They will have difficulty selectively
focusing on the sub-set of examples relevant to a condi-
tional probability judgment. In contrast, the simple-to-
complex hypothesis predicts that young children will
either focus on a single, modal, exemplar type or use a
strategy of comparing two types of exemplars.

With these hypotheses described, the remainder of this
paper reports the results of two experiments exploring
young childrens’ and adults’ conditional predictions. The
logic of the studies follows Shaklee’s work on diagnosing
rules for association judgments. Participants see different
frequency distributions of exemplars, and then make con-
ditional predictions. By assessing which distributions sup-
port or weaken which predictions we may diagnose the
strategies people are using.

1 If the goal is getting a red marble, then high frequencies of [red in
gamble 1] and [blue in gamble 2] support higher ratings for gamble 1, while
high frequencies of [red in gamble 2] and [blue in gamble 1] support higher
ratings for gamble 2.

4. Experiment 1

This experiment compares conditional predictions un-
der two different frequency distributions of examples. In
the “Correlation” distribution all examples fell on one diag-
onal of a contingency table (e.g., A and D). Thus there is a
perfect association between the two feature dimensions
(i.e., egg color perfectly predicts diet and vice versa). In
the “Partial” distribution only one cell is empty; some
examples appear in one of the off-diagonal cells (B-cell,
see Fig. 1). The association between the two features is
weaker in the Partial than Correlation distributions. How-
ever, the conditional probabilities of some features are
actually higher (more distinct) in the Partial distribution.
Other features have chance-level conditional probabilities
in the Partial. The Partial distribution also contains a single
modal example-type and some large differences in the
base-rates of individual features. In contrast there is no
single mode and base-rates are more balanced, hence less
informative, in the Correlation distribution.

The Introduction described four strategies for condi-
tional prediction: Modal, base-rate, Conditional Probabil-
ity, and association. These strategies yield distinctive
patterns of responses when applied to the Partial and Cor-
relation distributions (see Fig. 1 for graphical representa-
tion of strategies). The modal strategy is to always predict
the features of the most frequent exemplar in the Partial
condition; since there is no mode in the Correlation dis-
tribution, predictions cannot be made (chance-level per-
formance). The base-rate strategy yields the same
pattern. Two of the features have higher base-rates than
the others in the Partial distribution so children should al-
ways predict those. The base-rates are all about equal in
the Correlation distribution, so no consistent predictions
can be made. The key implication of the Association strat-
egy is that all predictions have the same magnitude (dif-
ference from chance). Because there is a strong
association between the features in the Correlation distri-
bution, each feature on one dimension can be used to pre-
dict the feature on the other dimension. The association is
weaker in the Partial distribution, so predictions should
be weaker in all cases. The Conditional Probability strat-
egy yields the same predictions as the Association strat-
egy for the Correlation distribution. However, the
conditional probabilities vary from certain (1) to chance
(.5) in the Partial distribution. Thus the Conditional Prob-
ability strategy implies that some predictions in the Par-
tial condition will be strong, while some will not differ
from chance.

Participants for this experiment were preschool-aged
children, young school-aged children, and adults. Past re-
search has shown some inconsistent results regarding pre-
schooler’s probability judgments. These children have not
been studied in contingency learning paradigms, so little
is known about their processing of frequency distributions.
Girotto and Gonzalez (2008) study suggests there is wide
variability in how preschool-aged children make condi-
tional predictions. School-aged children have been found
to make conditional predictions (e.g., A/[A+B]), rather
than association judgments ([A + D]/[B + C]) on causal and
contingency learning tasks, suggesting a bias toward
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attending to conditional probability rather than associa-
tion in this group.

4.1. Methods

4.1.1. Participants

Twenty-one younger children (Mean Age =4:6,
Range = 4:1-5:2), 18 older children (Mean Age=8:3,
Range = 7:2-8:10), and 20 adults participated. Children
were recruited from daycares and afterschool programs
serving a largely middle-class population in a mid-sized
Midwestern city. Adults were college students participat-
ing for extra-credit in courses at a large Midwestern
university.

4.1.2. Design

Participants learned about two distributions of exem-
plars: A set of birds, and a set of fish. The birds had two
dimensions: Diet (bugs or berries) and egg color (white
or brown). The fish also had two dimensions: Habitat (river

or pond) and behavior (active at night, active in the day). In
each set one dimension was arbitrarily designated ‘“Row”
(diet and habitat), the other: “Column”. One level of each
dimension was arbitrarily designated the “positive fea-
ture”, the other “negative feature.” Individual features are
referred to by their dimension and sign (e.g., R+, R—, C+,
C—) Thus the examples can be described as R+C+, R+C—,
R—C+, R—C— (corresponding to A, B, C, D cells). The specific
assignments of features were: Bugs (R+), Berries (R-),
White Eggs (C+), Brown Eggs (C—), Lake (R+), River (R-),
Day (C+), Night (C—). Each participant encountered two
different frequency distributions (see Fig. 1). In the Corre-
lation distribution, each level of one dimension was paired
with a single level of the other. Thus all and only birds who
ate bugs laid brown eggs (while berries co-occurred with
white eggs), and all and only river fish were active at night
(pond co-occurred with day). In the Partial distribution,
one level of each dimension predicted perfectly (e.g., bug
eaters always had brown eggs, but some berry eaters also
laid brown eggs).
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Participants encountered both sets of animals, one hav-
ing a Correlation distribution, and one having a Partial dis-
tribution. Content (fish/bird) was randomly paired with
distribution across participants, and order of presentation
was also randomized. Presentation of each set involved
two phases. In the Learning phase, a participant guessed
the features of 14 examples (one at a time) and received
feedback. For example, in the Bird set, a participant
guessed whether the next bird would eat berries or bugs,
and would lay brown or white eggs. After making the
guess, the actual example appeared. A tally of encountered
examples remained visible throughout the Learning phase.
After each Learning trial a bird/fish icon was added to one
of four virtual boxes, effectively filling in a contingency ta-
ble. The tally of encountered examples was not visible dur-
ing the next, Prediction, phase of the experiment.

In the Prediction phase participants were given one fea-
ture and asked to predict the other feature. Four questions
asked for single-item predictions. Each question presented
an example known to have one feature (i.e., brown, white,
bugs, berries). The participant then predicted the feature of
the other dimension. For example, “We found a bird that
eats bugs (R+). Do you think it will lay brown eggs (C+)
or white eggs (C—)?” Each participant made all four predic-
tions in random order. Participants also indicated their
confidence (“know for sure”, “think maybe”, or “just guess-
ing). Following the four single-item predictions, partici-
pants made two frequency predictions. Participants saw
10 individuals with one feature and predicted how many
would have a particular value of the other feature dimen-
sion. For example, “We have 10 birds that eat bugs. How
many do you think will lay brown eggs?” Participants used
a sliding “scroll-bar” to indicate a number; moving the sli-
der caused the appropriate number of examples to be dis-
played (e.g., moving the slider to five showed five brown
eggs). Frequency predictions were made for the two fea-
tures composing the D-cell exemplars (R— and C-).

4.1.3. Procedure

Adults participated in groups in a computer classroom
equipped with 12 individual workstations. Children were
tested individually in a quiet location within their child-
care sites. Instructions presented the task as game in which
explorers were learning about animals on an island. During
the Learning phase, participants watched as one of the
explorers discovered examples of the animals (birds or
fish).

Prior to each discovery the participant guessed what the
next example would be like (the two properties it would
have). Upon discovery participants learned the true fea-
tures of the example and the explorer added it to the
appropriate box (e.g., “This bird eats berries and lays
brown eggs. It goes in this box here.”). For children, Learn-
ing phase responses earned “Explorer Points” (which could
be redeemed at the end of the task for time to play a simple
computer game). Critically, at the conclusion of the Learn-
ing phase, experimenters had children count the different
types of examples. Experimenters read all text for children,
explained the displays, and described response options and
results of the guesses. In many cases children pointed to
the screen and experimenters used a computer mouse to

indicate a response. Children comfortable with the inter-
face were allowed to make their own responses.

4.2. Results

Participants’ responses were converted into “prediction
scores” by combining the feature prediction and confi-
dence rating. The three levels of confidence were assigned
numeric values (1, 2, 3; guess, think, know) and assigned a
sign based on feature prediction (positive for positive fea-
tures, negative for negative features). Thus prediction
scores ranged from —3 to 3 (no 0). A high score indicates
confident prediction of the positive feature. Mean predic-
tion scores are presented in Fig. 1. Primary analyses used
these confidence ratings in parametric tests (ANOVA, t-
tests). Secondary analyses involved non-parametric tests
(sign, chi-square) of the binary feature prediction data. Re-
sults from secondary analyses always matched the primary
analyses, and so are not reported. Condition order (Correla-
tion first or Partial first) did not effect predictions.

Participants’ prediction scores may be compared against
patterns predicted by the four strategies (see Fig. 1). As an
example of how strategy predictions were generated, con-
sider predictions given feature C+ in the Correlation condi-
tion of Experiment 1 (first panel of Fig. 1). In this case, the
participant is told that the object has feature C+ (e.g., lays
brown eggs). The task is to decide whether the object has
feature R+ or R— (e.g., eats bugs or berries). On the modal
strategy R+ and R— are both possible, because there is no
real mode (there were six instances of R+C+, and eight of
R—C-). Similarly, the base-rate strategy would also be split
(overall six exemplars had R+, while eight had R—). The con-
ditional probability strategy would make a clear prediction
of R+ because of the six exemplars with C+, six had R+ and 0
had R—. The association strategy also predicts R+ because
the correlation between the two dimensions is perfect: C+
is always associated with R+. Note that these strategy pre-
dictions are qualitative only; they suggest when predic-
tions should be different from chance, and the direction
(+ or —) of that difference.

The basic quantitative measure of learning from the
exemplars is whether predictions differed given one fea-
ture value (e.g., berries) than given the other (e.g., bugs).
“Given-feature” refers to the known feature in the single-
item prediction (e.g., “this bird eats bugs, what color eggs
does it lay?”, “bug” is the Given-feature). To simplify anal-
yses, data from the Correlation and Partial conditions were
analyzed separately. The first analysis considered single-
item predictions in the Correlation condition. An ANOVA
with Age and Content (Bird, Fish) as between-subjects vari-
ables and Given-Feature (four levels R+, R—, C+, C—) as a
within-subjects variable revealed a main effect of Given-
Feature, F(3, 159) =30.2, 1, = .36, p <.001. Consistent with
the distributions shown in the Learning phase, participants
were more likely to predict the positive value of one fea-
ture when given the positive value of the other than when
given the negative value (e.g., R+ given C+ rather than C—,
see Fig. 1). Similarly participants made more negative
feature predictions given negative features than given
positive (e.g.,, R— given C— than C+, all comparisons
p <.05, Tukey’s HSD). The ANOVA also revealed a small
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Age X Given-Feature interaction, F(6, 159)=2.7, n; =.09,
p <.05. Simple-effects showed that Adults made a greater
distinction in their predictions given one of the feature-
values (C+) than did children. However, the general pattern
of more + predictions given + features, and more - predic-
tions given - features held for all three age groups (all
comparisons p<.05, Tukey’s HSD). The comparisons
against chance-level responding (see Fig. 1) also indicate
that adults were more consistent in their predictions, but
that participants in all age groups made predictions in ac-
cord with the distribution shown in the Learning phase.
The only other significant effect from the ANOVA was a
small Content by Given-Feature interaction, F(3,
159)=3.5, 1, =.06, p<.05 indicating somewhat greater
distinction among Given-Features for the Bird than for
the Fish items. Overall, participants learned the relations
in the Correlation distribution and used this distribution
to make consistent conditional predictions. This pattern
is consistent with both the Association and Conditional
Probability strategies, and inconsistent with a focus on
modal exemplars or base-rates.

Participants showed sensitivity to the distribution pre-
sented in the Learning phase when making Frequency pre-
dictions as well. Fifty-percent represents a plausible
chance rate for each level of a binary feature. On average,
adults predicted that 81% of individuals known to have
R— would have C—, and that the frequency of R— in a group
known to all have C— would be 77%, both p < .05, 1-tailed t-
tests vs. chance. Children predicted C— at greater than
chance levels given R— (younger: 72%, older: 67%), but
did not reliably predict greater than chance levels of R— gi-
ven C— (younger: 40%, older: 53%). Finally, guesses in the
Learning phase also indicate sensitivity to the distribution.
Recall that participants predicted the features of the next
example to be encountered in this phase. Did people pre-
dict likely combinations of features (R+C+ and R—C—) more
than unlikely ones (R+C— or R—C+)? This test compares the
“on” and “off” diagonals and is akin to a Phi-coefficient or a
Fisher’s exact test. Adults predicted the frequent feature
combinations on 85% of trials (vs. 15% infrequent combina-
tions, t(19)=9.5, p<.001). Older children predicted fre-
quent combinations on 63% of trials, and younger
children did so on 69% of trials, t(17)=2.3, p <.05, and
t(20) = 4.3, p <.001, respectively.

In contrast to the good learning displayed in the Corre-
lation condition, children made no systematic predictions
in the Partial condition (see bottom panel of Fig. 1). An AN-
OVA with Age and Content as between-subjects variables,
and Given-Feature as a within-subjects variable showed a
weak main effect of Given-Feature, F(3, 159)=3.1,
112 =.05, p<.05. This main effect was conditioned by a
stronger interaction between Age and Given-Feature, F(6,
159)=4.5, n’=.15, p<.005. The simple-effect of Given-
Feature was significant only for adults, F(3, 159)=12.0,
115 =.18, p<. 001. Children’s predictions did not differ
across the four given features, younger: F(3, 159) = .84, old-
er: F(3, 159)=.02. Children’s responding most closely
matches the Association strategy; adults’ best matches
Conditional Probability.

In the Partial condition, the predictive power of Given-
features varies; C+ strongly predicts R+ (8:0 in the Learning

Phase), R— somewhat less strongly predicts C— (3:0), R+
inconsistently predicts C+ (8:3), and C— is not predictive
(3:3 for R+ and R-). As indicated by the chance compari-
sons for Single questions (in Fig. 1), adults recognized all
three predictive relations. Also consistent with examples
in the Learning phase, adults responded at chance given
the non-predictive feature (C-). Children’s predictions
did not differ from chance for any of the Given-features.
The same pattern is apparent on the Frequency questions.
Adults predicted that 65% of the examples with R— would
have C—, but did not expect difference from chance (47%)
given C—, t(19)=1.9, p <.05 (1-tailed), and t(19) = —.6, ns,
respectively. Moreover, predictions given R— differed sig-
nificantly from predictions given C—, t(19)=2.0 p <.05
(1-tailed). Neither older nor younger children made signif-
icantly different predictions in the two cases.

Although children did not make systematic predictions
in the Partial condition, there is evidence that they did en-
code the distribution in the Learning phase. R+C+ examples
were the most common; R—C+ examples never occurred.
During the Learning phase, adults and younger children
were significantly more likely to predict R+C+ than R+C—,
36% vs. 20% t(19) = 2.3, and 34% vs. 22% t(20) = 2.6, both
p <.05, respectively. Older children also selected R+C+
more often (31% vs. 22%), but the difference did not reach
statistical significance.

4.3. Discussion

Participants in all three age groups learned predictive
relations when there was a perfect correlation between
two binary feature dimensions. When each feature always
and only occurred with another, even preschool-aged chil-
dren used this relation to make predictions. Adults also
learned predictive relations when only some features per-
fectly co-varied. When the distribution supported partial
prediction, neither preschool-aged nor young school-aged
children reliably used one feature to predict another. This
failure occurred despite the fact that some feature combi-
nations occurred much more frequently than did others in
the Learning phase.

Participant’s predictions were inconsistent with the
Modal and Base-rate strategies. These strategies would
have led to more reliable predictions in the Partial than
the Correlation distributions, the opposite of the observed
pattern. Adults clearly responded using the Conditional
Probability strategy: They made all four conditional pre-
dictions in the Correlation distribution but all and only
those involving a conditional probability difference in the
Partial distribution. Children’s responses seemed most
consistent with the Association strategy. The overall asso-
ciation between features decreased from the Correlation to
Partial distribution. This decrease had a general effect on
children’s predictions; they made reliable predictions
when the association was strong, but no reliable predic-
tions when the association was weaker. Modal, Base-rate,
and Conditional Probability strategies all would have sup-
ported at least one reliable prediction in the Partial distri-
bution (i.e., R+ given C+). However, children did not make
this, or any other, prediction given a partial correlation in
the Learning phase. Note that a combination of these three



“non-Association” strategies would also have lead to reli-
able prediction in the Partial distribution. Children did
not reliably predict features when there was a strong con-
ditional probability of that feature, when that feature had a
higher base-rate, and when that feature characterized the
modal exemplar. The results from Experiment 1 support
the Association hypothesis: Children succeed in condi-
tional prediction tasks when there is a strong association
in the data (and fail otherwise).

Children’s failure to make consistent predictions in the
Partial distribution is somewhat surprising. There was a
reasonably strong association between the features
(x*(1)>4) so even the Association strategy might have
been expected to yield reliable predictions. Perhaps the
Partial distribution was just difficult. One possibility is that
children did not encode the frequency distribution in the
Learning phase of the condition. There is some evidence
against this possibility in that young children did preferen-
tially select the highest frequency examples (older children
also selected these examples most frequently, but the dif-
ference was not statistically significant). Still, it remains
possible that children did not remember the frequencies
by the time they got to the Prediction phase. It would be
useful to have better information about what children
remembered from the Learning phase. A classic question
in the literature is whether developmental differences in
predictions are due to changes in the accuracy of children’s
memories for frequencies, or are due to the ways children
use those memories (see Reyna & Brainerd, 1994 for re-
view). A second, related, possibility is that the information
in the Partial condition was more complex than in the Cor-
relation condition. In the Correlation condition the Learn-
ing phase presented only two kinds of exemplars (R+C+
and R—C-). In the Partial condition there were three kinds
of exemplars. In the Correlation condition, the two feature
dimensions could be recoded into a single dimension (as
there is a perfect correlation). The Partial condition re-
quired keeping all four features distinct. More carefully
probing memory for examples will also provide informa-
tion about the role of complexity of the stimuli. It is also
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possible to support encoding by making some features
more salient than others. Both these strategies are pursued
in Experiment 2.

5. Experiment 2

Did poor performance in the Partial condition of Exper-
iment 1 indicate reliance on the Association strategy, or
was it just an indication that the task was too difficult?
Would children use other strategies (i.e., Conditional Prob-
ability) if task demands were reduced or would they con-
tinue to predict based on association? Conditional
probability (as opposed to association) seems particularly
relevant in thinking about properties and categories. For
example, there are many instances in which a feature that
is diagnostic of category membership (sufficient) is not
necessary (and vice versa). We might expect that children
would be sensitive to such asymmetries and distinguish
p(category|property) from p(property|category). Perhaps
predicting properties from category membership, or mem-
bership from property possession, would facilitate chil-
dren’s use of examples. Experiment 1 required children
to attend to four distinct feature-values. Experiment 2 sim-
plified the demands of the task by using only two features,
each of which could be present or absent. Thus, Experi-
ment 2 asks whether young children can learn that cate-
gory membership predicts property possession even in
contexts in which property possession does not predict
membership (and vice versa).

Experiment 2 uses a more balanced frequency distribu-
tion. In Experiment 1, one kind of example appeared
much more frequently than did any other. On the one
hand, past research suggested that children might have
focused on this modal example (Shaklee & Mims, 1981).
However, children may also have failed to attend to the
exact nature of the non-modal examples. That is, they
may have simply remembered that most of the birds ate
berries and laid brown eggs, but not all did. Encoding
the stimuli as “berry/brown” or “not” provides no basis
for distinguishing the different conditional prediction

Wc
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Fig. 2. Mean prediction scores, Experiment 2. Higher scores indicate more frequent/confident predictions of the high frequency features (P= and C=). Given
indicates which feature was known (e.g., “We know this shell has spots” is given P=). “P” and “C” refer to property and category, respectively. “#” and “="
refer to the magnitude of the frequency differences in the distributions. Error bars indicate one standard error. * Differs from chance (0), p <.05, 2-tailed t-
test. Scores range from —6 to 6 because each participant made two predictions of each type (with fish and with shell content).
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questions (what happens if the eggs are white? What
happens if the bird eats bugs?). A more balanced distribu-
tion might allow children to identify specific, partial rela-
tions. That is, children may pay more attention to just
which kinds of non-modal exemplars they actually
encountered. This concern about encoding illustrates that
knowing just what children were attending to during the
Learning phase is critical to understanding their patterns
of predictions. Experiment 2 included a memory probe
at the end of the experiment, asking for recall of the fre-
quencies of different types of examples encountered dur-
ing learning.

The basic question motivating Experiment 2 was
whether children would use conditional probabilities to
make predictions when the task demands were reduced
(relative to Experiment 1). Use of conditional probabilities
implies differential prediction: The distribution of exem-
plars allows reliable prediction of some features but not
others. For example, property possession might predict
category membership, but category membership may
not predict property possession. In contrast, use of associ-
ation implies the same reliability of prediction for all fea-
tures (as was shown in Experiment 1): The association
between property possession and category membership
is symmetric. The changes from Experiment 1 to Experi-
ment 2 may make it easier for children to detect an asso-
ciation, or more difficult, but that relative change should
be the same for all four conditional predictions. Although
the specific cell frequencies have changed, the qualitative
pattern of responses generated by the Conditional Proba-
bility and Association strategies remain the same as in
Experiment 1. The more balanced frequency distribution
means there is no modal exemplar, thus the Modal strat-
egy would result in chance-level performance. Finally,
base-rates of the individual features do vary (by as much
as 3:1). In Experiment 2, the Base-rate strategy would be
to predict the feature with the balanced distribution (indi-
cated by the ‘=" symbol in Fig. 2), as there are always more
instances with this feature than the other.

5.1. Methods

5.1.1. Participants

Thirty-one younger children (Mean Age =4:8, range
4:1-5:6) and 31 older children (Mean Age 7:10, range
6:8-8:9) participated in the experiment. Children were re-
cruited from the same local preschool and afterschool pro-
gram population as were those children participating in
Experiment 1. Thirty adults also participated. Adults were
sampled from the same classes in a university population
as used in Experiment 1.

5.1.2. Design

Experiment 2 was generally similar to Experiment 1.
The major differences were the frequency distributions of
examples, and the labels provided for the examples. One
feature dimension involved category labels (e.g., Krisser
shell). The other dimension involved property labels (e.g.,
is spotted). Each dimension had a single value that could
be present or absent (e.g., Krisser shell or not, spotted or
not). These feature-values are designated: P=, P+, C=, and

C#. The = and # designation refers to the frequency distri-
bution.? The overall distribution of exemplars was similar to
the Partial structure (from Experiment 1), with the differ-
ence that absolute frequencies were roughly balanced (see
Fig. 2). Thus a distribution contained three feature combina-
tions that appeared with roughly equal frequency, and a sin-
gle feature combination that never appeared. The critical
feature of this design is that there are two cases of equal
conditional probabilities and two cases of unequal condi-
tional probabilities. These relations are illustrated in Fig. 2.
Of the exemplars with the feature P = (e.g., “spotted”), about
half have the property C=(e.g., Krisser shell) and half have
the feature C# (e.g., not a Krissershell). Of the exemplars
with the feature “P=" (e.g., “not spotted”), all have the prop-
erty C=, none have the property C#. The experiment has a
2 x 2 design: Dimension (category or property) crossed with
Frequency Distribution (= or #).

The distribution of exemplars means that a strategy of
using conditional probabilities to make conditional predic-
tions would result in consistent and confident predictions
given “#” frequency features (C# and P#) and chance-le-
vel performance given “=" frequency features (C= and P=).
With this distribution there is a relatively weak association
between property and category (weaker than the Partial
condition from Experiment 1) thus the prediction of the
Association strategy is chance-level performance for all
predictions. There is no modal exemplar type; the Modal
strategy would also yield chance-level performance on all
tasks. A strategy of attending to Base-rates would yield
non-random performance because the marginal frequen-
cies are unequal. However this strategy predicts no differ-
ence between the “=" and “#" cases (e.g., C= predicted for
both P= and P#). These strategy predictions are illustrated
in Fig. 2.

As in Experiment 1, in the Prediction phase participants
heard about one example with each feature and predicted
presence/absence of the other feature (the single-item pre-
dictions). Each single-item prediction may be identified by
the given dimension (property or category) and by the fre-
quency distribution characteristic of this feature in the
Learning phase (= or #). An example of a P= single-item
prediction was: “We know that this shell has spots. Is it
a Krisser shell or is it not a Krisser shell?” This is a “P” item

2 The actual assignment of features to = and # distributions was counter-
balanced across participants. Half the participants encountered positive
property distributions in which all category members possessed the
property: There was a large frequency difference in favor of property
possession given category membership (5:0). Half the participants encoun-
tered positive category distributions in which all examples with the
property were category members. Critically each distribution allows
prediction of property from one level of category (either presence or
absence), and prediction of category from one level of property (either
presence or absence). The “predictable” conditionals in the positive
property distribution were p(category|property possession) and p(prop-
erty|category non-membership). The predictable conditionals in the
positive category distribution were p(category|property absence) and
p(property|category membership). Each participant encountered two
blocks of the same distribution (once with fish examples, and once with
shell examples, see Materials, below). The main purpose of the condition
manipulation was to control for any differences between making inferences
from or to present versus absent features (e.g., “is a Targa” vs. “is not a
Targa”). This condition manipulation did not affect any results so is not
considered further.
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because the property is given (“spots”). This is an = item
because in the Learning phase half the spotted shells were
Krissers and half were not.

One major design difference in Experiment 2 was inclu-
sion of a memory probe in the Prediction phase. Rather
than also asking for frequency predictions (as in Experi-
ment 1), Experiment 2 asked for memory of the Learning
phase distribution. Participants responded to a series of
six pairwise comparisons. Each comparison presented
two feature combinations and asked whether the partici-
pant had seen more of one or the other (or both equally)
in the Learning phase. For example, one comparison asked
whether they had seen more Krisser shells that were spot-
ted, or more Krisser shells that were not spotted (or about
the same).

5.1.3. Materials and procedure

The basic procedure was similar to that of Experiment
1. Participants encountered a number of examples in a
Learning phase, and then made predictions about future
examples in Prediction phase. The Learning phase differed
slightly from Experiment 1 in that participants did not
guess each feature value separately, but rather guessed
which of the four example-types (feature combinations)
would appear in the next trial. The Learning Phase began
with 10 exposure trials in which one of the four possible
examples appeared. Participants confirmed their under-
standing by moving the example to the correct “box” for
its type. Six guessing trials followed the 10 exposures. Pic-
tures of all four possible example appeared and the partic-
ipant selected one (by clicking with the mouse) as the one
that would be next encountered. The actual example then
appeared, and was moved to the correct box. The Predic-
tion phase followed the Learning phase. The full experi-
ment involved two blocks, each consisting of a Learning
phase and a Prediction phase. Materials for one block were
fish examples that varied in size (big or not big) and color
(red: Targa fish, white: not Targa fish). Materials for the
other block were shells varying in pattern (spotted or
not) and contour (spiky: Krisser shells, smooth: not Krisser
shells). Note that in one block shape indicates category,
while in the other it indicates property. Similarly, in one
block color indicates category, and in the other it indicates
property. Order of blocks was randomized across partici-
pants. In all other respects materials and testing conditions
were identical to those of Experiment 1.

5.2. Results

Following Experiment 1, feature predictions and confi-
dence ratings were combined to yield prediction scores.
Fig. 2 presents mean scores for the four single-item predic-
tions (given C=, C#, P=, and P#) predictions. Differences
from zero indicate a tendency to predict one feature value
rather than the other. Participants’ mean prediction scores
were analyzed in an ANOVA with Age as a between-sub-
jects variable, and Frequency distribution (=, #) and given
Dimension (category, property) as a within-subjects vari-
able. This ANOVA revealed a significant effect of Frequency
distribution, F(1, 89) = 34.9, though this effect was condi-
tioned by an interaction with Age, F(2, 89)=14.5,

r]f] =.24, p <.001. Only adults made stronger or more con-
sistent predictions for # frequency items than for = fre-
quency items, F(1, 89)=29.6, p<.001. both Fs for
children <1. Dimension did interact with Frequency distri-
bution, F(1, 89)=5.8, 17; = .06, p <.05. Overall participants
were more sensitive to Frequency distribution for prop-
erty-given items than for category-given items. Although
children did not make reliable predictions for # frequency
items overall, they did show the frequency effect for prop-
erty-given items. Children reliably predicted the high fre-
quency category for property-given items when there
was a unequal frequency in the Learning phase, Both F(1,
30)=4.4, p <.05. Neither older nor younger children reli-
ably predicted the high frequency property for category-gi-
ven items. This same pattern is evident in the comparisons
against chance-level responding reported in Fig. 2. Adults
predicted high frequency properties at rates greater than
chance for both # category-given and property-given
items (but showed no reliable difference in prediction for
either of the two = Frequency distribution items). Children
showed reliable prediction of high frequency properties
only for # property-given items.

In summary, children recognized when it was possible
to predict an individual’s category identity from a property
it possessed, and when such predictions could not be
made. Moreover, unlike Experiment 1, children were able
to recognize the partially predictive structure of their
experience. They predicted category membership from
properties even when they could not (and did not) predict
properties from category membership.

What did children encode from the Learning phase of
the task? In each block of the Learning phase, three feature
combinations appeared with roughly equal frequencies,
and one combination was absent. Overall, participants reli-
ably remembered that the absent combination appeared
less often than did the others. Table 2 presents the mean
frequencies of correct memory responses for comparisons
of absent vs. present combinations. Also shown in Table 2
are the mean prediction scores given both correct and
incorrect memory. Even young children showed good
memory for the frequency differences in the Learning
phase. However, this good memory did not translate into
accurate prediction. Even when children remembered that
they had seen fewer of one kind of example than another,
they did not reliably predict that the more frequent exam-
ple would occur in the future (i.e., prediction scores did not
differ from chance for memory-correct items). Moreover,
young children were not significantly more likely to make
accurate predictions when they remembered correctly
than when they remembered incorrectly, t(13)=1.0, ns.
Older children, however, did have significantly higher pre-
diction scores when they remembered the frequency dif-
ferences correctly, t(11)=2.6, p<.05. Too few adults
(N=7) ever misremembered the frequencies to make a
meaningful comparison possible.

5.3. Discussion
Young children did learn partially predictive relations in

Experiment 2. They distinguished predictable and un-pre-
dictable features based on frequencies of examples
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Table 2
Memory performance, Experiment 2.

Mean proportion of correct memory?

Mean prediction score (range —3 to 3)

When memory-correct When memory incorrect

Adult .92
Older .83
Younger 77

2.2 (N=30) 13 (N=7)
.75 (N=26) _74 (N=12)
41 (N=26) 31(N=14)

2 Only comparisons involving absent vs. present feature combinations included.

encountered. Specifically, when all of the examples that
had a property (e.g., spots) belonged to a category (e.g.,
Krisser shell) children later predicted that an object with
the property would belong to the category. They made this
prediction even in the absence of an inverse relation; it
was not the case that most category members had the
property (e.g., the number of spotted and non-spotted Kris-
ser shells was equal). Children were able to selectively use
the encountered frequency distribution to support particu-
lar conditional predictions. The results of Experiment 2
contrast with those of Experiment 1 in which children
did not learn predictive relationships in the absence of per-
fect correlation. At least in some circumstances young chil-
dren will learn specific conditional relations from patterns
of co-occurrences, and will distinguish predictive relations
from non-predictive ones.

The results of Experiment 2 indicate that children will
attend to conditional probabilities when making predic-
tions. Children distinguished predictions involving large
probability differences, from those involving small or no
differences. The changes from Experiment 1 to Experiment
2 allowed children to detect conditional probabilities in the
frequency distributions encountered in the Learning phase
of the experiment. Critically, predictions were not always
more confident or reliable in Experiment 2 than in Experi-
ment 1. It was not simply that the association between
the two dimensions was easier to detect. Rather than
responding to the general association in the exemplars,
children responded differentially to specific conditional
probabilities. Children did not focus on the base-rates or
marginal frequencies of features. That Krisser shells were
more common overall (about 2:1) did not lead children to
always predict a new shell would be a Krisser. Rather their
predictions were sensitive to the frequency of Krisser shells
conditional on coloration (spots or not). Finally, the results
of Experiment 2 are also inconsistent with use of modal
exemplars, as there was no single mode in the distribution
yet children still showed some reliable predictions.

Despite the attention to conditional probabilities,
Experiment 2 also revealed significant limitations in chil-
dren’s predictions. The most striking finding was that chil-
dren did not learn to predict properties from category
membership. This finding is especially curious given other
demonstrations in the literature that children readily make
category-based inductions, and may have an easier time
predicting properties given category membership, than
predicting category membership given properties (Gelman,
Collman, & Maccoby, 1986). One direction for future re-
search is to explore the task features that might make
one conditional prediction more salient than another. Per-

haps in tasks involving learning from multiple examples
(like the current study) categorization is the more salient
prediction. Tasks involving verbally presented information
about classes of objects (e.g., including generics such as
“birds lay eggs”, Gelman, Star, & Flukes, 2002) might dis-
pose children to focus on predicting properties of category
members.

Overall, children were less consistent in distinguishing
predictive and non-predictive relations than were adults.
One hypothesis is that children might simply have a poor
memory for example frequencies (Brainerd, 1981). The re-
sults of Experiment 2 suggest that memory difficulties can-
not entirely account for children’s predictions. Children
were generally accurate in remembering the frequency dif-
ferences (over 75% correct for even the youngest group).
Moreover only for older children did the consistency and
strength of predictions depend on memory performance.
Even for older children, though, accurate recall did not al-
ways lead to prediction of the higher frequency outcome in
the Prediction phase. The dissociation between memory
and prediction suggests some other process at work. Chil-
dren differ from adults in the way they use their memories
of example frequencies to generate conditional predic-
tions. The general discussion considers some explanations
for children’s patterns of performance, and the nature of
the developmental differences between children and
adults.

6. General discussion

Almost all accounts of learning and cognition empha-
size detecting patterns in experience and then projecting
those patterns into the future. This kind of inductive infer-
ence is likely an important mechanism for children’s cogni-
tive development. Thus it is important to understand how
children identify patterns, and how they project those pat-
terns into the future. The results from the current study
suggest that preschool-aged children can detect and use
conditional probabilities among features. However, rela-
tive to adults, children may be have greater difficulty
detecting such probabilities, and may be less consistent
in how they use such observed probabilities to make
predictions.

The basic question motivating the current study was
how children would use examples to make conditional
predictions (predicting one feature given another): Would
they focus on a single salient example, associations, base-
rates, or conditional probabilities? In Experiment 1, adults,
young school-aged, and preschool-aged children all
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learned and used a consistent association between two
two-level dimensions (e.g., diet and egg color). When each
level of one dimension always and only co-occurred with a
single level of the other dimension, all participants used
this relation to make predictions about the composition
of novel exemplars. Participants detected the association
and projected it into the future. However, when there
was only a partial relation between the dimensions, chil-
dren’s future predictions did not differ from chance levels.
In the Partial condition features were either necessary or
sufficient, but not both: The association was not consistent,
but at least one of the four simple conditional probability
relations was very consistent in the encountered examples.
Children did not reliably use the conditional probability
differences to make future predictions. Adults did, recog-
nizing when they could make a confident prediction and
when they could not. There was some evidence from chil-
dren’s performance in the Learning phase that they had de-
tected the conditional probabilities in examples. However,
they did not use these probability differences to make pre-
dictions about new cases. The overall conclusion is that
children rely on the association between features when
making conditional predictions.

Experiment 2 went on to ask whether children could use
conditional probabilities under less demanding conditions.
Two major changes were framing the task within the con-
text of properties and category membership, and reducing
the number of features to keep track of by using positive
and negative feature levels. Thus Experiment 2 presented
category members and non-members that either had or
lacked a property (e.g., spotted and not spotted Krisser
shells and non-Krisser shells). In this case, both preschool-
aged and school-aged children did use conditional probabil-
ities; they recognized that some features could be predicted
from others, but not all could. This selective prediction is the
critical result. In Experiment 2 it was never possible to pre-
dict each feature from every other one. On some of the pre-
diction measures the best one could do was a random guess,
and, indeed, children’s performance was close to chance in
such cases. In other cases, one outcome was more likely
than the other (at least from the examples encountered in
training). Children did recognize at least some of these pre-
dicable cases. Thus they distinguished conditional infer-
ences that were supported by experience, from those that
were not. Children did not use the overall association as
the basis of predictions. In neither experiment did children
seem to rely on the modal exemplar or base-rates when
making conditional predictions.

The current study complements Girotto and Gonzalez’s
(2008) recent demonstration that young children do attend
to posterior probabilities when making conditional predic-
tions. In that work children did use information about one
feature to predict the value of another (i.e., they did not
rely on base-rates or unconditional probabilities). How-
ever, Girotto and Gonzalez’s study was not designed to un-
cover the basis of those conditional predictions; children
could have answered correctly by attending to the associ-
ation between the features or by attending to specific con-
ditional probabilities. The current study explored the basis
of predictions by comparing children’s success given differ-
ent frequency distributions of examples. The overall con-

clusion is that children have difficulty selecting the
relevant pieces of information to use as the basis for a con-
ditional prediction. When a there is a perfect correlation in
experience, all examples “point” toward the same predic-
tion. If all and only if spotted shells are Krisser shells
(and thus all and only Krissers are spotted) using any
sub-set of the examples as the basis of prediction yields
the same response. In contrast, when there is only a partial
correlation (e.g., one feature is necessary but not sufficient
for another) different examples support different predic-
tions. The claim is not that young children are unable to
selectively attend to particular sub-sets of examples, but
rather that such selection is difficult. With sufficient sup-
port (e.g., in Experiment 2) children can focus on a relevant
sub-set of examples to make reliable predictions. One
important direction for future research is to explore the
conditions that support this kind of selection. For example,
the current study used a relatively small number of exam-
ples. The partially predictive structure of experience may
become clearer with more experience.

Young children did attend to conditional probabilities
in experience, but they did not do so readily (Experiment
1) or completely (Experiment 2). In some ways these diffi-
culties seem inconsistent with the infancy literature. The
literature on infant learning is extremely diverse, but some
notable findings are directly relevant to the current exper-
iment. Infants are sensitive to patterns of correlated attri-
butes (Bhatt, WIlk, & Rovee-Collier, 2004; Younger &
Cohen, 1983). The key feature of a correlated attribute
structure is that there are multiple cues providing redun-
dant information. Kloos and Sloutsky (2008) note that cor-
related attribute structures are relatively easy to learn
because they do not demand selective attention. What
makes learning a relation difficult is attending to informa-
tive features and screening out uninformative ones. Babies
do display sensitivity to very specific statistical relation-
ships (e.g., transition probabilities) in otherwise noisy data
(Aslin et al., 1998; Kirkham et al., 2007). These paradigms
display information serially, so babies experience one fea-
ture regularly following another. Thus one of the possible
statistical relations (transition probability of one element
following another) is particularly salient and useful in
these tasks. Interestingly, recent research suggests that in-
fants are also sensitive to backwards transition probabili-
ties (the probability of one element preceding another,
Pelucchi, Hay, & Saffran, 2009). That infants attend to both
of these conditional probabilities means that they face the
problem of coordinating the two statistics, of deciding
which is relevant and what happens when they conflict.
The results of the current study suggest that tasks requir-
ing selective attention to, and usage of, different statistical
relations may be difficult for infants as they seems to be so
for preschool-aged children.

A major difference between the methods in the current
study and methods used in the infancy literature is the nat-
ure of the response required from participants. The current
study asked for a prediction. Methods used with infants
typically rely on a same/different or old/new judgment.
There was evidence in the current study that young chil-
dren did detect conditional probability relations in their
experience. Children showed sensitivity to the frequency
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differences both in their (unconditional) guesses about
exemplars (in the Learning phase of Experiment 1) and in
their memories for exemplar frequencies (Experiment 2).
We might expect good performance on tasks that require
detection of differences in conditional probabilities. The
current study, and prior research on developing probability
judgments, suggests that developmental differences ap-
pear in the process of forming a response (making a predic-
tion, stating a probability; Reyna & Brainerd, 1994). Thus
children may be relatively good at detecting conditional
relations, but poor at using such information to make
predictions.

The introduction contrasted two general views of the
development of inductive reasoning. The first, perhaps
more traditional, suggests that young children have diffi-
culty integrating multiple pieces of information; their
judgments incorporate only a sub-set of the information
used by adults. The alternative is that selection is the key
developmental variable. Young children may attend to
multiple and diverse pieces of information, but they have
difficulty picking out specific relations that are relevant
to specific tasks. Children do well when there are multiple
redundant cues that support an overall “gist” representa-
tion (Kloos & Sloutsky, 2008; Reyna, 2005; Reyna & Brain-
erd, 1994). In the categorization and inductive inference
literatures the “selection development” view is often asso-
ciated with similarity-based accounts. Young children cat-
egorize and make predictions based on the overall
similarity between objects, rather than focusing on a sub-
set of criterial features, that might be characterized as a
“rule” (Sloutsky, 2003). There is some debate regarding
how well children distinguish those features that are
merely associated with a category from those that are truly
necessary (e.g., causal, essential; see Gelman, 2003). The
current study provides a slightly different perspective on
this debate by focusing on statistical relations rather than
content (e.g., perceptual vs. causal features). Do young
children distinguish associated features from those that
are necessary (or sufficient)? That is, association is a more
general relation composed of two more specific conditional
relations: Degree of necessity and degree of sufficiency. If
children only encode the more general “associated” rela-
tion then they may have difficulties on tasks in which
the component relations (necessity and sufficiency) are
disassociated, as in the current study. For example, focus-
ing on the general level of association between a feature
and a category may give a misleading impression of the
ability to predict the feature from the category or the cat-
egory from the feature.

The results from Experiments 1 and 2 present some-
thing of a mixed picture of young children’s abilities to
use more specific statistical relations of conditional proba-
bility (necessity and sufficiency). On the one hand they
suggest that necessity supports sufficiency and vice versa.
Learning that feature A predicts feature B is easier when
feature B also predicts feature A. On the other hand, chil-
dren were able to learn one conditional relation in the ab-
sence of another, at least when predicting category
membership. Children learned that spotted shells were
likely to be Krissers, even though Krisser shells were not
especially likely to be spotted. However, this selective

attention to specific conditional probabilities seemed
somewhat fragile, dependent on task demands and con-
tent. Interestingly, though, even when children did not
use specific conditional probabilities, they seemed to en-
code the relevant information. They remembered the fre-
quency distributions, but did not always use them.

If children generally have accurate memory for the rel-
ative frequencies of different kinds of examples, and use
such information in some cases, how should we character-
ize the development of conditional predictions? Does
development involve increases in ability, overcoming of
biases, or changes in beliefs? The “selection development”
accounts suggest an increasing ability to select and focus,
to apply different judgment strategies in different contexts
(Kloos & Sloutsky, 2008; Reyna, 2005). Yet these accounts
do not explain why children showed more selective use of
examples in some tasks than in others (e.g., predicting
category membership given property rather than vice
versa). There might be some general biases to process or
use experience for particular purposes; children may just
encode information in terms of category prediction, for
example. Alternatively, different priors may account for
the different predictions made by children and adults.
For example, a prior expectation of symmetric or bi-condi-
tional relations (Barrouillet et al., 2002) may account for
children’s failure to learn relations in the Partial condition
of Experiment 1. Placing the task in the context of catego-
rization (in Experiment 2) may have activated different
assumptions about different types of relations. Prior
knowledge that all but not only members of a category
have a particular property (e.g., all zebras are striped,
but not all striped animals are zebras) or that only but
not all category members have a given property (e.g., only
mammals have fur, but not all do) may provide children a
good basis for reasoning about conditional probabilities. In
contrast, novel properties (especially simple binary fea-
tures in an experimental setting) may be assumed to have
a symmetric and perfectly correlated relation. The current
study demonstrates that young children can pick out con-
ditional probabilities from frequencies of co-occurrence in
experience, but that detecting such probabilities is some-
what difficult. Whether such difficulty is best understood
as a capacity limitation, a bias, or as the result of specific
beliefs and knowledge remain questions for future
research.

This study explored the kinds of relations children learn
from experience. At least for the task used in the two
experiments, young children tended to use bi-conditional
relations of association. The two experiments did not re-
veal any tendency to focus on absolute frequencies either
of features (base-rates) or of example-types (modal exem-
plars). Young children were able to learn and use condi-
tional probabilities, at least in the context of predicting
category membership from properties. The critical ability
demonstrated by attending to conditional probabilities is
selection. Only some kinds of example are informative
about conditional probabilities; to make conditional pre-
dictions children must selectively attend to relevant evi-
dence. In contrast, all examples contribute to an
association and, every example is informative about the
absolute frequencies of the properties it instantiates. Put
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another way, evidence may fail to support a consistent
association but still allow (some) conditional predictions.
Determining which pieces of evidence are relevant to some
hypothesis, and how different types of evidence are to be
weighted, are really the hard problems of inductive infer-
ence. The positive results of Experiment 2 demonstrate
that young children do use evidence selectively, depending
on the judgment involved. They may not always select and
use evidence in the same ways as adults, but they are not
indiscriminate. A promising direction for future research
is to describe the principles that guide children’s attention
to, and use of, examples when making inductive
judgments.
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