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Abstract

Three experiments with preschool- and young school-aged children (N = 75 and 53) explored the
kinds of relations children detect in samples of instances (descriptive problem) and how they general-
ize those relations to new instances (inferential problem). Each experiment initially presented a per-
fect biconditional relation between two features (e.g., all and only frogs are blue). Additional
examples undermined one of the component conditional relations (not all frogs are blue) but sup-
ported another (only frogs are blue). Preschool-aged children did not distinguish between supported
and undermined relations. Older children did show the distinction, at least when the test instances
were clearly drawn from the same population as the training instances. Results suggest that younger
children’s difficulties may stem from the demands of using imperfect correlations for predictions.
Older children seemed sensitive to the inferential problem of using samples to make predictions
about populations.

Keywords: Inductive inference; Cognitive development; Covariation; Belief revision; Statistical
learning

Much of what we know about the world we have learned through encounters with exam-
ples. This learning process can be understood as having two parts or steps. First the learner
notices some regularity in experience. One might observe that all of the birds encountered
have been able to fly. In the second step the learner extends or generalizes that regularity
beyond the examples encountered. One might infer that all birds fly. There is considerable
debate over how to characterize the psychological mechanisms underlying this kind of
inductive inference (Colunga & Smith, 2008; Griffiths, Chater, Kemp, Perfors, & Tenen-
baum, 2010; Xu, 2008), and how such inferences might develop (Sloutsky, 2003). Like
many other researchers (Griffiths et al., 2010; Romberg & Saffran, 2010), we contend that
learning from examples is best understood as a form of statistical inference. We note that
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the two parts of learning from examples correspond to a fundamental distinction between
descriptive and inferential statistics. Learning from examples presents two problems, a
descriptive one and an inferential one. In characterizing performance, or development, on
some learning task it is important to distinguish these problems. The current paper explores
these issues in the context of changing expectations after encounters with novel examples.
What happens after the learner encounters some flightless birds? We ask whether develop-
mental differences in this kind of belief revision reflect changes in solutions to the descrip-
tive problem or the inferential problem.

1. Descriptive problem: Conditional and biconditional relations

Most work on categorization and inference has explored the descriptive problem of
learning from examples. How do people identify various kinds of relations present in the
evidence they encounter? For example, noticing two clusters organized around prototypes
is a way of describing the structure of a set of examples. That description might then be
useful in making predictions about novel examples. Many research questions concern the
relative difficulty of identifying various relations (e.g., are linearly separable categories
easier to learn? see Murphy, 2002 for review) and developmental changes in children’s
abilities to learn different relations. In particular, work on ‘‘statistical learning’’ (see
Romberg & Saffran, 2010) explores the kinds of statistical relations or patterns children
notice in experience (e.g., transition probabilities and non-adjacent dependencies). Devel-
opmental differences in abilities to detect patterns may underlie differences in learning
from examples.

The current study follows up on some suggestions that young children may find it
more difficult to reason with simple conditional relations than biconditional relations. A
biconditional is a symmetric relation of correlation between two variables. A bicondi-
tional can be understood as a conjunction of two ‘‘simple’’ conditionals. For example,
‘‘All and only red fish live in warm water’’ is equivalent to ‘‘All red fish live in warm
water’’ and ‘‘All warm-water fish are red.’’ Research on conditional reasoning suggests
that children tend to over-interpret statements of simple conditionals (‘‘if red, then
warm’’) as statements of biconditionals (‘‘if and only if red, then warm’’; Barrouillet &
Lecas, 2002). Additionally, preschool- and young school-aged children more readily learn
biconditional relations in a set of examples than simple conditional relations (Kalish,
2010). For example, after encountering a set of examples in which all the red fish lived
in warm water and all the green fish lived in cold, children reliably made predictions con-
sistent with the biconditionals (e.g., presented a red fish, they predicted it would live in
warm water). However, after encountering a set of examples in which only some condi-
tional relations were reliable (all the red fish in warm water, but some green fish in warm
and some in cold), children often failed to learn anything. That children are less likely to
learn and use conditional relations than biconditional is consistent with the view that
children encode general, ‘‘gist,’’ relations (e.g., red and warm ‘‘go together’’; Reyna &
Brainerd, 1994), and that it is easier to learn associations (i.e., probabilistic biconditionals)
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than specific conditional probabilities (Vadillo & Matute, 2007). Kloos (2007) notes that
young children tend to assume that systems of relations are coherent, such that predictive
relations holding between different variables are consistent with each other. Associative
relations are symmetric (relation of A to B is the same as B to A), which may be an
aspect of coherence. These considerations motivate the hypothesis that young children
may fail to generalize a conditional relation to new examples because they have difficulty
extracting or noticing that relation in familiar examples.

2. Inferential problem: Feature matching and evidence

The central focus of the current study is development of solutions to the inferential prob-
lem of learning from examples. The crux of the debate between different statistical
approaches to cognition lies in their characterization of inferential abilities. Associative the-
ories treat the inferential problem as one of matching, hence the designation ‘‘similarity-
based’’ (Sloutsky, 2003). The relations observed in past examples (e.g., all birds have
wings) will be extended to new examples based on the similarity of old and new exemplars.
Empirical questions concern the nature of those similarity calculations (e.g., holistic or
selective, based on perceptual or abstract features; Sloutsky & Lo, 1999). In contrast, the-
ory-based and Bayesian accounts treat the relation between old and new exemplars as evi-
dential (Gelman & Kalish, 2006; Griffiths et al., 2010; Xu & Tenenbaum, 2007a). A
relation observed in old examples provides evidence regarding the existence of the relation
in new examples. The evidential relation is formalized in the principles of inferential statis-
tics. At least in large measure the debate between accounts turns on whether inference is a
process of feature matching or a process of evidence evaluation. The current study addresses
this question developmentally: Are there age-related differences in whether young children
approach the inferential problem of learning from examples as one of similarity assessment
or as one of evidence evaluation?

On Bayesian or theory-based views, a key piece of the inferential problem is under-
standing the process that generated the encountered examples. The characteristic feature
of evidence evaluation is treating examples as samples. Which population the examples
are informative about depends on how they were selected. Despite several recent dem-
onstrations of infants’ and young children’s sensitivity to sampling (Xu & Denison,
2009; Xu & Tenenbaum, 2007a), there remains considerable debate about the need to
incorporate such mechanisms in accounts of cognition and cognitive development. For
example, connectionist models involve quite powerful mechanisms for discovering
descriptive relations and matching old and new examples, but no representations of
relations between samples and populations (Rogers & McClelland, 2004). We return to
this question in the general discussion and consider the implications of sensitivity to
evidential aspects of inferential problems for models of children’s learning and belief
revision. The remainder of this introduction introduces the task used in the empirical
studies described in the paper and illustrates the specific descriptive and inferential
problems posed.
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3. Study overview

The experiments reported below present children with a consistent descriptive problem:
After first encountering a biconditional relation (e.g., all and only red fish live in warm
water) they see some discrepant instances that violate the biconditional but are consistent
with some simple conditional relations (e.g., some red and some green fish live in warm
water). The descriptive question concerns the kinds of relations that children will identify
and use. If children are limited to representing biconditional relations, then they should
either ignore the discrepant examples (and maintain their belief in a biconditional relation)
or abandon all their prior beliefs (and respond randomly). In contrast, representing simple
conditional relations allows a discriminative response to the discrepant examples. That is,
the discrepant instances support some predictions (e.g., all red fish in warm water, all cold-
water fish are green) but undermine others (e.g., all warm-water fish are red, all green fish in
cold water). After experience with discrepant instances, will children maintain their beliefs
in supported relations but abandon their beliefs in undermined relations? A necessary
condition for doing so is having ‘‘solved’’ the descriptive problem of belief revision posed
by the task.

While forming an accurate descriptive representation of the instances is necessary, it is
not sufficient. There is still the inferential problem of using the representations to make fur-
ther inferences. In the ‘‘training phase’’ of our task, children encounter a set of instances (in
two blocks, early and late). In the ‘‘testing phase’’ children are asked to demonstrate what
they have learned by generating predictions. The descriptive relation learned during the
training phase provides a warrant for this prediction. If one has learned that ‘‘all the red fish
live in warm water’’ during training, then upon encountering a red fish in the testing phase
one ought to predict that it lives in warm water. However, this warrant depends on the rela-
tion between the training and test instances. That is, one ‘‘ought’’ to predict that a red fish
will live in warm water if that fish is drawn from the same population as those encountered
during the training phase. If the test fish is drawn from a different population, the relevance
of the training instances is much less clear. The ‘‘inferential’’ problem of inductive infer-
ence is evaluating the relation between known cases (training) and unknown (test).

The current study addresses the inferential aspect of inductive inference by manipulating
the evidential relation between the training and test instances. In the ‘‘sample’’ conditions
the test instances are drawn from the training set: The children are making predictions just
about the evidence. In the ‘‘populations’’ conditions the test items are novel instances from
a larger population. The population conditions raise the possibility that the descriptive rela-
tions observed in the training instances might not hold for the testing instances. Our question
is whether children will perform differently in the sample and population conditions. A child
could fail to make the ‘‘correct’’ predictions about the training instances for two reasons.
First, she might have difficulties representing descriptive relations in the training instances
previously encountered. This difficulty would affect performance in both population and
sample conditions. Alternatively, a child might be unable ⁄ unwilling to make the inferential
leap to generalize from training instances to novel test instances. This difficulty would only
affect performance in the sample conditions. The goal of manipulating the relation between
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the training and test instances is to diagnose the source of difficulty in belief revision; is it
descriptive or inferential.

In sum, the current study presents a series of belief revision problems. The first research
question is whether young children are able to solve the descriptive problem of detecting
relations by combining two different sets of instances (one instantiating a perfect bicondi-
tional and one not). Children will show their success by distinguishing between supported
and undermined relations. Failure to distinguish supported and undermined relations is a
null result that could be due to descriptive difficulties or due to the inferential structure of
the problem. Thus, the second research question is whether young children approach the
inferential problem posed by our belief revision tasks by considering evidential relations.
Will children distinguish between supported and undermined inferences when the training
and test items are drawn from the same population but not otherwise?

4. Experiment 1

4.1. Methods

4.1.1. Participants
Forty younger children (M = 4:8, Range = 4:1–5:2) and 40 older children (M = 7:11,

Range = 7:2–8:9) participated. Forty-two participated in the Sample condition (21 younger,
21 older), and 38 in the Population condition. Children were recruited from daycares and
afterschool programs serving a largely middle-class population in a mid-sized Midwestern
city.

Design. Children learned about a set of instances composed of two binary features. Spe-
cifically, children heard about a set of fish, or a set of shells (with content counter-balanced).
The fish varied in habitat (red or blue background) and color (green or white). The shells
varied in shape (spiky or smooth) and pattern (plain or spotted). For ease of exposition we
describe the structure of examples using the shell features. Children encountered instances
in two training phases. In the Early phase, eight instances, four spiky-spotted shells and four
smooth-plain shells presented a perfect biconditional relation between shape and pattern. In
the Late phase, children encountered two more spiky-spotted shells, and importantly, six
spiky-plain shells that partially undermined the established biconditional.1

After each training phase, children made a series of conditional predictions. There were
four single conditional prediction questions, one for each feature. A child encountered a test
instance known to have one feature, and then predicted the feature value on the other dimen-
sion. For example, ‘‘This shell is spiky. Do you think this shell is spotted or plain?’’ Partici-
pants selected an option and then indicated confidence on a three-point scale (‘‘just
guessing,’’ ‘‘think maybe,’’ or ‘‘know for sure’’). No feedback was provided. Critically,
instances encountered in the Late phase were inconsistent with the perfect biconditional
observed in the Early phase but did support two conditional predictions, p(Spiky|Spot-
ted) = 1, and p(Plain|Smooth) = 1 (see Fig. 1). These two conditional predictions are desig-
nated ‘‘Supported’’ by Late phase examples. The other two conditional predictions,
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p(Spotted|Spiky) and p(Smooth|Plain) were ‘‘Undermined’’ by the Late phase (both
p ! .5).

The inferential structure of the task involved the relation between training and test
instances. In the Sample condition, the test instances were drawn from the set of training
instances. That is, after each Learning phase, children were told that the shells or fish were
collected into a box ⁄ tank. For example, children heard, ‘‘Now Barney [the ‘‘explorer’’ in
the story] is taking all the shells he found and putting them in this box.’’ The conditional
predictions involved instances drawn from the training set. ‘‘Here is one of the shells from
Barney’s box. We know this one has spots, do you think it is spiky or smooth?’’ In the Pop-
ulation condition, test instances were not part of the training set. The conditional predictions
concerned new instances drawn from the larger population (e.g., Now Barney has found
another shell on the beach. We know this one …). Children heard no information about the
sampling procedure that generated the new test instances, just that they were not part of the
training set. In all other respects, the Sample and Population conditions were identical.

4.1.2. Procedure
Instructions presented the task as a computer game in which explorers were learning

about a newly discovered island. After a brief introduction that illustrated the dimensions
and feature values of the set, children learned about a series of instances, one at a time. In

Fig. 1. Structure of Experiment 1 and expected scores for Supported and Undermined Predictions After Expo-
sure to Early and Late Instances. High prediction scores mean reliable and confident prediction according to the
biconditional relation in the Early instances.
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the first four trials of the Early training phase, the child watched as an explorer encountered
four instances (randomly selected from either spiky-spotted or smooth-plain). The remain-
ing Early phase trials began with pictures of the four possible instances. The child saw pic-
tures of all four instance-types and then guessed which kind of instance the explorer would
encounter next. After each instance appeared, the child moved it to the correct location for
its kind. Locations were labeled (with words and a picture of the correct instance for the
location). Following eight Early phase trials, the child made four single conditional predic-
tions. Then, eight Late training phase trials were followed by another round of conditional
predictions. All encountered instances remained visible throughout both training phases but
were not visible during the prediction questions.

4.1.3. Scoring
Children’s responses were coded as 1 when they were consistent with the biconditional

relation presented during the Early training phase (spiky if and only if spotted), and as –1
when they were inconsistent with that relation. These codes were then scaled (multiplied)
by the certainty rating (‘‘guess’’ = 1, ‘‘think’’ = 2, ‘‘know’’ = 3), resulting in predictions
scores ranging from –3 to 3 (no zero). Data used in analyses were sums of the two supported
predictions and sums of the two undermined predictions. These sums ranged from –6 to 6.

4.2. Results

Fig. 2 presents children’s mean prediction scores for the Supported and Undermined con-
ditional predictions. The key result is whether scores for Supported predictions were higher
than scores for Undermined predictions after the Late training phase. Because the full design
contains a large number of factors, and main results of interest would appear as three or

Fig. 2. Mean prediction scores, Experiment 1. Error bars indicate one standard error. *Mean score greater than
chance, p < .05.
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four-way interactions, data from the two conditions (Population and Sample) will be
analyzed separately. Following this separate analysis we then compare across conditions.

4.2.1. Population condition
An anova with Age as a between subjects-factor, and Support (Supported ⁄ Undermined)

and Phase (Early ⁄ Late) as within-subjects variables revealed only an effect of Phase,
F(1, 40) = 4.4, p < .05, pg

2 = .11. Children gave lower prediction scores after seeing the
Late phase instances. There was no effect of Support, F(1, 40) = .2, nor any interaction
between Support and Phase, F(1, 40) = .09. There were no age differences. In general, chil-
dren became less consistent in their predictions from the Early to Late phase, independent
of the evidential support provided by the later instances.

Prediction scores combine both direction (consistent with the biconditional or not) and
magnitude (confidence). Considering these components separately reveals similar patterns
of results. Children gave fewer responses consistent with the biconditional in the late than
the early phase for both supported (76–64%, W(21) = 12, p < .05, one-tailed) and under-
mined relations (75–58%, W(24) = 114, p = .05, one-tailed). In neither phase were rates of
consistent predictions different for supported and undermined relations, and there were no
age differences. We would expect that the number of children indicating they ‘‘know for
sure’’ their predictions are correct would decrease from early to late phase for undermined
but not supported relations, and the number of ‘‘just guessing’’ responses would increase.
Children rarely indicated they were ‘‘just guessing’’ (average 13%), but often (average
59%) indicated they ‘‘know for sure.’’ These rates did not differ significantly by any of the
factors (Age, Phase, or Support).

Children did learn the predictive relations supported by the Early phase instances. From
Fig. 2 it is apparent that prediction scores were above chance in the Early phase. The same
pattern appears in individual response patterns. Each child made four predictions. The
chance of making all four consistent with the biconditional relation in the Early phase
instances (spiky if and only if spotted) is .5^4 = .06. Twenty of 42 children showed this pat-
tern. No child consistently predicted the biconditional pattern in the Late phase.

In summary, children in both age groups reliably used their experience in the Early phase
to generalize a biconditional relation to novel instances. However, children abandoned this
learning after seeing discrepant instances in the Late phase. Critically, there was no evidence
of selective re-evaluation. Children stopped expecting Early phase relations that continued to
be supported by Late phase experience as well as those that were undermined. Following dis-
crepant evidence, children became very conservative, and seemed not to use their prior experi-
ence when predicting the properties of novel instances (chance-level performance). This
effect could be a result of difficulty representing single conditional relations after Late phase
experience. Alternatively, chance-level performance after the Late phase could be a result of
concerns about the representativeness of the samples encountered in the training phases.

4.2.2. Sample condition
From Fig. 2 it is apparent that children responded quite differently to predictions about

instances drawn from the training set (Sample condition) than to novel instances (Population).
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anova results from the Sample condition revealed an interaction between Age and Support,
F(1, 36) = 4.1, p = .05, g2

p = .11. Older children gave higher prediction scores for Supported
than for Undermined predictions, F(1, 36) = 5.3, p < .05, g2

p = .18. However, this difference
was only significant following experience with discrepant instances in the Late phase,
F(1, 18) = 7.4, p < .01. There was no reliable difference between Supported and Undermined
predictions in the Early phase, F(1, 18) = .88. No other effects were significant in the anova
analysis. Critically, Younger children never distinguished between Supported and Under-
mined predictions.

The same general patterns appeared when direction and confidence of predictions are
considered separately (rather than combined in prediction scores). Older children made
more predictions consistent with the biconditional during the Late phase for Supported than
Undermined relations (76% vs. 52%, W(12) = 54, p < .05, one-tailed). Younger children
did not (72% vs. 75%). Children were generally confident, giving very few ‘‘just guessing’’
responses. However, Older children were less likely to ‘‘know for sure’’ about Undermined
than Supported relations in the Late phase (63% vs. 39%, W(10) = 39, p < .05, one-tailed).
Younger children did not show this confidence difference (50% vs. 62%). There were no
differences on either measure for Supported and Undermined relations during the Early
phase.

Children in both age groups learned and used the biconditional relation from Early phase
experience (see Fig. 2). Younger children continued to base their predictions on the initial
biconditional even after Late phase experience: Prediction scores were high, and greater
than expected by chance, for both Supported and Undermined relations. In contrast, Older
children reliably predicted Supported relations but responded at chance levels for Unsup-
ported relations after Late experience. Fifteen participants (seven younger) made all four
predictions consistent with the biconditional in the Early phase. Ten children (six younger)
continued to show this pattern after the Late phase.

The most direct way to compare across conditions, for the result of interest, is to compare
the differences in prediction scores for Supported and Undermined relations after Late expe-
rience. Did children distinguish supported from undermined relations? For Older children,
the difference was relatively small in the Population condition, M = .05, but relatively large
in the Sample condition, M = 2.5, t(39) = 2.0, p = .05. In contrast, Younger children’s
scores were similar for Supported and Undermined relations in both Population and Sample
conditions, M = .67 and M = ).4, respectively, t(39) = .81.

4.3. Discussion

The results of Experiment 1 are fairly clear for the older, school-aged, children. These
children learned a biconditional relation between two properties in an early sample of
instances (e.g., spiky and only if spotted). Following experience with a later set of instances,
older children adjusted their predictions to reflect the two simple conditional relations
within the combined sample (e.g., spiky if spotted, not-spotted if not-spiky). However, given
the same training sample, older children did not use the conditional relations to make pre-
dictions about new instances. This pattern of results suggests that school-aged children can
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recognize simple conditional relations, but something about the task in the Population con-
dition left them unwilling to generalize from the sample to a wider population. We suggest
that the source of this reluctance lies in concerns about the representativeness of the early
and later samples.

Older children did generalize to new instances following the early training phase. After
seeing eight instances embodying a biconditional relation, children expected that relation
would hold for new instances as well. All the spiky shells had been spotted, so the next
spiky shell would be spotted as well. After encountering a later training set, which included
some discrepant instances (e.g., smooth spotted shells), older children no longer generalized.
From the children’s perspective, the task presented two very different samples; the relation
between the properties in the early set was very different than the relation in the late set.
Which is the right one? Why are they different? With the representativeness of the samples
in question, older children adopted a very conservative strategy and declined to generalize.
Before the representativeness of the sample was called into question (in the early phase)
children did reliably generalize to new instances.

The conclusions with respect to younger children are exclusively negative: Preschoolers
failed to show that they represented simple conditional relations, as evidenced by not distin-
guishing supported from undermined predictions. One explanation for this failure is that the
descriptive problem was too difficult for them. Representing biconditionals is rather easy,
but simple conditionals are somewhat more difficult (see Kalish, 2010). However, extrane-
ous task demands may have driven performance. This possibility is addressed in Experiment
2. Interestingly, there was some suggestion that younger children might also be sensitive to
the inferential structure of the problem. When making predictions to new members of the
population, the discrepant instances led to chance-level performance. However, when mak-
ing predictions about the members of the observed sample, children tended to ignore the dis-
crepant instances and continue to make predictions consistent with the biconditional.
Perhaps young children’s difficulty with the descriptive problem prevented them from
responding to the inferential problem in the same way as older children.

It is important to note that Experiment 1 presented instances as pictures on a computer. In
this design, children also encountered similar pictures that did not necessarily represent the
observed instances (e.g., the options for guessing the next instance encountered, the illustra-
tions of the correct ‘‘boxes’’ for encountered instances). It is possible that younger children
were confused about which pictures represented instances and which did not. Children did
learn from the early phase exposure, so they were not completely confused. Nonetheless, a
procedure that more clearly established just which instances had been encountered might
reveal better performance. Experiment 2 addressed this possibility by using physical toy
instances. Another advantage of using real instances is that the relation between sample and
population can be more clearly expressed. In Experiment 2 participants observed both early
and late sets selected from the same population (i.e., a bag of toys). If older children were
reluctant to generalize to a population in Experiment 1 because of concerns about sampling,
Experiment 2 might assuage those concerns and support inferences about new instances.
Would children generalize when it is clear that the new instances in the test phase were sam-
pled in the same way, from the same population, as the instances in the training phase?
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5. Experiment 2

5.1. Methods

5.1.1. Participants
Thirty-two younger children (Mean age = 5:1, Range 4:3–5:9) and 16 older children (Mean

age = 7:11, Range 7:3–8:9) participated. Seventeen younger children participated in the Sample
condition, 15 participated in the Population condition. Older children participated in the Popula-
tion condition only. As Older children were predicted to distinguish between Supported and
Undermined predictions in the Population condition, there was no value in including them in the
(easier) Sample condition. Children were recruited from programs serving the same population
as that of Experiment 1. No child participated in more than one experiment in this report.

5.1.2. Materials
Experiment 2 used three-dimensional toys in place of the computer-presented pictures

from Experiment 1. Toys were soft rubber animals of about 2¢¢ in length. The experimental
set consisted of ten frogs and six dinosaurs. Each toy was of uniform color, either yellow or
blue. Additional materials consisted of a large lidded ‘‘source’’ box and four ‘‘evidence’’
boxes, each displaying a picture of one of the toys.

5.1.3. Design
Experiment 2 followed the design of Experiment 1 very closely. Children saw eight Early

phase instances exhibiting a perfect biconditional relation between color and species (four
blue frogs and four yellow dinosaurs), and eight Late phase instances supporting some of
the component conditional relations, but undermining others (six yellow frogs and two yel-
low dinosaurs). The conditional prediction questions and confidence responses took the
same format as those in Experiment 1. We also assessed children’s memory for the instances
they encountered during the experiment. At the end of the experiment, children were asked,
‘‘Which kind of toy did we see most?’’ and ‘‘Which kind of toy did we never have?’’

5.1.4. Procedure
The procedure of Experiment 2 followed that of Experiment 1 with the exception that

children did not make predictions about the objects they were to encounter. Each trial in
both learning phases began with an experimenter pulling out a toy from the source box. The
child then placed the toy into one of the four corresponding evidence boxes. As in Experi-
ment 1, encountered instances were visible throughout both learning phases, but not during
the prediction and memory questions.

5.2. Results and discussion

Fig. 3 shows children’s mean prediction scores (calculated as in Experiment 1) for both
Supported and Undermined relations. As Older children did not participate in the Sample
condition, data from the two age-groups are analyzed separately.
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In contrast to the Population condition of Experiment 1, Older children did distinguish
between Supported and Undermined relations. An anova with Phase (Early ⁄ Late) and Support
(Supported ⁄ Undermined) as within subject factors revealed a significant interaction, F(1,
15) = 21.9, p < .001, g2

p = .59. Scores for Supported relations did not change from Early to
Late phase, while scores for Undermined relations decreased, F(1, 15) = 32.4, p < .001. Simi-
larly, Supported and Undermined scores did not differ after the Early phase, but scores for
Undermined relations were significantly lower after the Late phase, F(1, 15) = 29.3, p < .001.
Comparisons against chance-level performance support these conclusions. Older children’s
prediction scores were greater than expected by chance, except for Undermined relations in
the Late phase (see Fig. 3). Older children did generalize the conditional relations in the full
(Early + Late) sample to new instances. We suggest that the critical difference between Exper-
iments 1 and 2 is that the sampling process in Experiment 2 was more clear, allowing children
to recognize the relation between the sample of instances and the full population.

These patterns of results also appeared in direction and confidence judgments considered
separately. Older children made more predictions consistent with the biconditional in the Late
phase for Supported than for Undermined relations (93% vs. 44%, W(11) = 66, p < .005, one-
tailed). They were also more likely to indicated they were ‘‘just guessing’’ for Undermined
than Supported in the Late phase (47% vs. 13%, W(10) = 43, p < .05, one-tailed). Rates of
claiming to ‘‘know for sure’’ did not differ significantly (Supported: 68%, Undermined: 44%)
in the Late phase. However, children were significantly more likely to claim to know for sure
about Undermined relations in the Early phase (82%, W(9) = 40, p < .01, one-tailed).

The physical stimuli and sampling process did not have the same effect for Younger chil-
dren. An anova with Condition (Sample ⁄ Population) as a between-subjects factor, and

Fig. 3. Mean prediction scores, Experiment 2. Error bars indicate one standard error. *Mean score greater than
chance, p < .05.
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Phase and Support as within, did reveal a main effect of Phase, with Early scores being
higher than Late scores, F(1, 30) = 9.7, p < .005, g2

p = .24. The effects of Phase and Sup-
port also interacted with Condition, F(1, 30) = 10.1, p < .005, g2

p = .26. In the Population
condition, there was no significant interaction between Phase and Support, just a main effect
of higher prediction scores Early than Late, F(1, 14) = 6.1, p < .05, g2

p = .30. This result is
consistent with young children’s performance in Experiment 1. Experience with the discrep-
ant instances in the Late phase reduced all prediction scores in the Population condition.
Similarly, young children’s scores for both Supported and Undermined relations were
greater than chance in the Early phase, but not in the Late phase (see Fig. 3). Thus, unlike
Older children, the clarification of the sampling strategy in Experiment 2 did not lead Youn-
ger children to generalize the conditional relations present in the sample. There were no
significant differences in rates of predictions consistent with the biconditional or in confi-
dence ratings.

The hypothesis after Experiment 1 was that young children just had difficulty integrating
across Early and Late training to identify the conditional relations in the sample (the
descriptive problem). Would use of real objects help? Although children in the Sample con-
dition showed the predicted interaction between Phase and Support, F(1, 16) = 8.9,
g2

p = .36, p < .01, the effect was in the opposite direction. Younger children gave signifi-
cantly lower scores to Supported relations after Late phase experience, F(1, 16) = 7.7,
p < .05. This pattern represents something like the Gambler’s Fallacy: I have not seen any
blue dinosaurs, so I will predict that the next blue thing will be a dinosaur (and the next
dinosaur will be blue). Scores for Undermined relations did not differ between the Early and
Late phases, F(1, 16) = .49. Low prediction scores in the Early phase contributed to this
anomalous pattern. Children did not respond at greater than chance levels for Supported
relations even in the Early phase (see Fig. 3), but they did do so for Unsupported. It is
unclear why children did not respond reliably to Supported relations in the Early phase as
(at that point) the evidential support for Supported and Unsupported inferences was identi-
cal. Though it is not exactly clear what did drive Younger children’s predictions, the results
are generally consistent across both experiments and across both conditions: Younger
children did not use simple conditional relations to make predictions.

One explanation for young children’s puzzling behavior may be that children in the
Sample condition were simply not paying as much attention to the task. To answer the pre-
diction questions correctly children simply needed to recall that they had seen instances of
every kind but one (no blue dinosaurs). Children in the Population condition generally
responded accurately to memory probes. Ninety-percent of children in both age groups iden-
tified blue dinosaurs as the kind of example they had never seen. Eighty-five percent of
Older children correctly reported seeing the most of the yellow dinosaurs. Only 40% of
Younger children were correct about the most frequent instance; responses were relatively
evenly split among the three encountered types. Thus, children in the Population condition
did encode the necessary information (though only older children seemed to use this infor-
mation appropriately). Younger children in the Sample condition did not show robust mem-
ory: Only seven of sixteen correctly recalled which instance was never encountered, and
nine recalled the most frequent instance (one child was not asked the memory questions).
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Before considering the implications of Experiments 1 and 2 it is worth addressing one
final alternative explanation for young children’s chance-level performance following
encounters with discrepant evidence. Perhaps the experience of two different samples is just
confusing. Both older and younger children may experience the discrepancy between the
Early and Late phase experience as problematic. Perhaps someone is being tricky. Perhaps
something has changed. Older children are able to selectively respond to the discrepancy in
the instances, and recognize that some reliable inferences are still possible. Young children
might be responding to the inferential structure of the task, but in a very simple way; they
are suspicious or confused about the samples, so revert to chance-level performance. One
way to test this explanation of young children’s performance is to present a task in which
the discrepancy between the Early and Late phases is irrelevant: Both support the same
conclusions. Would children continue to show chance-level performance even when the
discrepant evidence was actually consistent with prior beliefs?

6. Experiment 3

Experiment 3 asked children to produce an outcome. For example, to get a dinosaur
would they pick a yellow animal or a blue one? This task effectively calls for a judgment of
relative conditional probability; is p(Dinosaur | Yellow) > p(Dinosaur | Blue). Although it
would seem that this comparative judgment would be more difficult than evaluating the
component conditionals, this may not be the case. The relative judgment is based on associ-
ation, which may be a more automatic computation (Vadillo & Matute, 2007) or one that
does not require selective attention (Kalish, 2010; Sloutsky & Fisher, 2008; Yao & Sloutsky,
2010). The important point, for the current study, is that the best selection does not change
with discrepant evidence like that used in the prior experiments. As long as one cell in the
contingency table is empty (all discrepant instances come from one of the off-diagonal
cells), both Early and Late experience leads to the same behavior. For example, if one has
never seen a blue dinosaur, then it will always be best to select a yellow animal in hopes of
finding a dinosaur, even if yellow frogs greatly outnumber yellow dinosaurs. Thus, we pre-
dict that children will show the same performance in Early and Late testing phases:
Encountering discrepant instances will not lead to chance-level performance in this task.

6.1. Methods

6.1.1. Participants
Nineteen younger children participated (M = 4:10, Range = 4:1–5:8). Children were

recruited from programs serving the same population as that of Experiments 1 and 2.

5.1.2. Design and procedure
The structure of the task was nearly identical to that of Experiment 2. The only differ-

ences came in the prediction phases. Following each learning phase the experimenter pre-
tended to sort all the instances into two boxes. All children responded to two questions
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about the instances sorted by color and two by shape. For example, in the case of color the
experimenter explained, ‘‘I put all the yellow toys into this box and all the blue toys into this
box.’’ Each selection box had a picture of a corresponding feature (i.e., yellow ⁄ blue or
frog ⁄ dinosaur). Children then selected one of the boxes to find a particular type of toy. For
instance, while presenting two color boxes the experimenter asked, ‘‘I want a frog. If I want
a frog which box should I pick?’’ Following their selection, children indicated how much
better their box choice was than the alternative (‘‘much better,’’ ‘‘a little better,’’ ‘‘does not
matter’’). Children made four judgments, one for each feature-value (frog, dinosaur, yellow,
blue). Half the children received two color questions first and the other half received two
shape questions first. At the end of the task, children received the same memory questions
as those in Experiment 2.

6.1.3. Measure
Children’s responses were converted to selection scores using the same procedures that

generated prediction scores in Experiments 1 and 2. Selections consistent with the Early
phase relation received positive scores. The ‘‘how much better’’ question determined mag-
nitude: 1 for ‘‘does not matter,’’ 2 for ‘‘a little better,’’ and 3 for ‘‘much better.’’ Thus,
scores for individual predictions ranged from –3 to 3. Following Experiments 1 and 2, two
predictions were Supported by Late instances, and two were Undermined. For example,
after the Late phase it is no longer certain that selecting the yellow box will produce a dino-
saur (however, it remains infinitely more likely than getting a dinosaur from the blue box).
Summing those two predictions yielded scores ranging from –6 to 6.

6.2. Results and discussion

Fig. 4 presents young children’s mean selection scores for Experiment 3. An anova with
Phase and Support as within-subjects variables revealed no significant main effects, nor was
the interaction significant, F(1, 18) = 2.5. In contrast to previous experiments, Late phase

Fig. 4. Mean selection scores, Experiment 3. Error bars indicate one standard error. *Mean score greater than
chance, p < .05. !p < .05, one-tailed test.
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experience did not lead to a reduction in scores or to chance-level performance. Children
gave selection scores that were significantly greater than chance in both Early and Late
phases (see Fig. 4). As predicted, there were no differences between Supported and
Undermined inferences. That some of the conditional predictions were undermined did not
lead children to revert to chance level performance. Late phase experience left it impossible
to predict the color of a frog (and children appreciated that fact in Experiments 1 and 2).
Nonetheless, children reliably indicated that one was more likely to find a frog among one
color of animal than the other. Although the Late phase presented some discrepant evidence,
children realized that the set of instances encountered across both phases did allow some
reliable inferences.

Just as in Studies 1 and 2, the selection scores combine direction (consistent with the
biconditional observed in the Early phase) and confidence (how much better one selection is
than the other). Considering these components separately did not reveal any significant
Phase or Support differences. For example, children were equally likely to indicate selec-
tions consistent with the biconditional for Undermined relations in the Early and Late
phases (71% and 82%, respectively). They were also equally likely to claim that their choice
of selection was ‘‘much better’’ than the alternative for Undermined relations in both the
Early and Late phases (39% and 42%, respectively).

Finally, children showed good recall. Fourteen of 16 correctly recalled which instance
was never seen; 11 ⁄ 16 correctly recalled the most frequent. Three children were not asked
memory questions because of experimenter error.

The results from Experiment 3 support the hypothesis that it is the descriptive task of
identifying and using simple conditional relations that accounted for young children’s
chance-level performance in Experiments 1 and 2. The learning phases of Experiment 3
were identical to those of the Sample condition of Experiment 2. That children performed
well in Experiment 3 but not in Experiment 2 suggests it is what they were asked to do with
the examples that mattered. Experiment 3 required only noticing a general gist or overall
association, and children performed well.

7. General discussion

The current study explored children’s inductive inferences in the context of partially dis-
confirming evidence. After encountering a biconditional relation (all and only dinosaurs are
blue) children encountered some partially disconfirming instances (all blue animals are
dinosaurs, but not all dinosaurs are blue). Preschool-aged children generally failed to distin-
guish between those predictions that were supported by the discrepant instances and those
that were undermined. Young school-aged children seemed to recognize the distinction but
only used the past experience to make predictions when the relations between encountered
and test instances were clear. Overall, the results suggest that young children had difficulty
with the descriptive problem in the belief revision tasks used. Older children’s performance
reflects attention to the inferential problem of belief revision.
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The current study supports previous findings that young children have difficulty using or
representing simple conditional relations (Kalish, 2010). Young children find it easier to
represent the overall gist (Reyna & Brainerd, 1994) or association between features, and
they may have difficulty focusing their attention on the component relations that make up
an association (Sloutsky & Fisher, 2008; Yao & Sloutsky, 2010). Of course, the current
study presents only negative evidence: We failed to find evidence that young children made
predictions based on simple conditional rather than biconditional relations. It remains possi-
ble that young children would show better performance under other conditions (e.g., with
more training). However, the pattern of results support the claim that conditional relations
are, at least, relatively difficult for young children. Young children did, however, reliably
detect and use biconditional relations (early phases of Experiments 1 and 2), given even
fewer examples than those available for simple conditional predictions (late phases). More-
over, younger children’s chance-level performance cannot be attributed to the contrast
between early and late training sets. In Experiment 3, younger children did make reliable
judgments based on the overall associations between features in the full training set. It
appears that the task of distinguishing evidential support for one conditional relation versus
others is difficult for young children. Making such distinctions is part of the descriptive
problem of belief revision.

It is important to note that the current studies do not identify the source of young chil-
dren’s difficulties in representing simple conditionals. One possibility is a representational
limitation. For example, young children may lack the ability to focus on one ‘‘direction’’ of
a relation. Vadillo and Matute (2007) suggest that the information processing demands of
learning a conditional probability are greater than those involved in learning an association.
An alternative view, though, is that children’s performance reflects a bias or preference.
Young children may tend to assume that relations are symmetric. They are able to represent
conditionals, but they think conditional relations are rare. Presented with two binary fea-
tures, children may assume the features are correlated. Commitment to this assumption
(a strong symmetry prior) would lead children to have difficulty abandoning the belief in the
face of disconfirming evidence. We tend to favor this second alternative, especially given
evidence that infants are able to learn simple conditional relations (e.g., transition probabili-
ties, see Romberg & Saffran, 2010). On this view it may be inappropriate to characterize
young children as having ‘‘difficulty’’ with the task. Perhaps their performance represents
an appropriate weighing of evidence with a (strong) prior. However, a strong prior on sym-
metric associations would not seem relevant in the sample conditions (where one is making
predictions just about the observed examples). It may be that failure to appreciate the differ-
ence between sample and population inferences is the real source of young children’s diffi-
culties. That is, young children held to their prior expectation of biconditional relations even
when such a prior expectation was less relevant.

Descriptive problems (representational, or strong symmetry prior) do not seem to account
for school-aged children’s performance. Rather the best explanation for older children’s per-
formance reflects the inferential structure of our tasks. When the relation between the train-
ing instances and test instances was clear (Sample condition of Experiment 1 and in
Experiment 2), older children used the distribution of features in the training sample to
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make predictions about a broader population (regardless of whether those distributions were
biconditional or simple conditionals). However, older children failed to use the training
examples to make predictions about new instances after encounters with discrepant
instances in the Population condition of Experiment 1. We suggest that this condition posed
a distinctive inferential problem. Children had encountered two very different samples (dif-
ferent distributions of features). There was no explanation for this difference. Was it
random? Were the samples drawn from different populations? Given this uncertainty,
children were unwilling to generalize to new instances.

In fact, children’s reluctance was well founded. They were encountering a non-station-
ary process; the design of the experiment depended on samples shifting between early and
late phases. This shift was hidden in Experiment 2 (the experimenters used trickery to
make it look like instances were selected at random). Most interestingly, this uncer-
tainty ⁄ trickery was irrelevant in the Sample conditions because children were asked to
make predictions about members of the training sets. We are not claiming that children
‘‘solved’’ the inferential problem presented in Experiment 1. It is very difficult to give a
normative account of just what one should predict given a non-stationary process like that
used in the experiments, though ignoring the evidence (which children did) is as reason-
able a response as any. Rather the central point is that young school-aged children were
attentive to the inferential structure of the problem; they did not approach the task as sim-
ply a descriptive problem. Note we are not claiming that preschool-aged were insensitive
to inferential structure. Their difficulties with the descriptive problem would have made
any sensitivity difficult to detect.

That children treat the problem of learning from examples, of making inductions, as
inferential is consistent with recent Bayesian approaches to cognition (Griffiths et al., 2010;
Oaksford & Chater, 2007) and stands in contrast to most work in the field, especially in the
developmental literature, which has focused almost exclusively on descriptive problems.
For example, prototype and instance models of categorization concern the kinds of descrip-
tive representations people form from encounters with instances (roughly, parametric or
non-parametric, see Murphy, 2002). Similarity-based, associative, or statistical learning
models explore the patterns people detect in experience (Xu, 2008). Associative accounts of
generalization, of how patterns are extended to new cases, can be characterized as ‘‘trans-
ductive’’ rather than truly inductive. One implication of the current study is that such
models are insufficient to account for children’s learning and inference.

‘‘Transductive inference’’ is usually taken to describe a movement from instance to
instance (Inhelder & PIaget, 1958), but it has been given a more precise formulation in
machine learning by Vapnik (1998). In our terms, transduction is an inference strategy that
ignores the distinction between samples and populations. That is, transductive inference
does not distinguish between making a prediction about one of the N instances already
encountered and a new (N + 1) instance. Transduction is a kind of simplifying assumption;
it works well when the N sample is truly representative of the population that generated the
N + 1 instance (see discussions of semi-supervised learning; Zhu & Goldberg, 2009). This
simplification has been (implicitly) adopted by most psychological accounts of inference
and categorization.
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To illustrate transductive inference, and the transductive nature of psychological models,
consider the following example. Imagine a learner has acquired a decision rule for assigning
two class labels to a set of N objects. For example, there is a prototype of the Class 1 objects
and a prototype of the Class 2 objects. What would the learner do when one of the N objects
is re-presented without its class label? Clearly the best way to assign the label is to apply the
learned decision rule; the learned rule is, in part, derived from this object. Matching the
unlabeled object to a prototype is guaranteed to provide the most accurate prediction of class
label achievable by the learner2 because that is how the prototypes were formed. Psycholog-
ical theories differ in their accounts of the decision rules people actually use (e.g., prototype
or exemplar-based), and formal theories may differ in their accounts of which decision rule
is really optimal. However, psychological theories tend not to differ in their accounts of
what people do when encountering a novel unlabeled object. The process is the same:
People apply the learned decision rule to the new object. Here, though, the justification is
more complex. The new object played no role in determining the decision rule. Using the
old rule for the new object is only a good idea if the new object is somehow related to the
original N objects: if it is a member of the same population. Transductive inference is insen-
sitive to the relation between old and new instances: It applies the old decision rule to both.
Inductive inference is sensitive to the relation and can potentially modify the decision rule
applied to new instances. Effectively, transductive inference treats the Population and Sam-
ple conditions of the experiments above as identical. The conditions differ only in terms of
the relation between training and test instances.

One hypothesis is that transductive inference is a sufficient model of human infer-
ence. Indeed, research suggests that adults are quite good at computing the descriptive
statistics of samples (learning decision rules), but quite poor at considering the relations
between samples and populations (Fiedler, Brinkmann, Betsch, & Wild, 2000; Juslin,
Winman, & Hansson, 2007). For example, people are very willing to make inferences
from non-representative samples and do not seem to adjust for, or even notice, threats
to sample validity.

If adults do not distinguish samples from populations, then it would be very reasonable to
assume that young children do not either. Appreciating inferential statistics seems to be a
relatively advanced aspect of reasoning. The debate between similarity-based and theory-
based accounts of children’s cognition can be understood as a disagreement about whether
children represent broader evidential relationships, such as those between samples and pop-
ulations, or whether they just reason from the particular set of encountered instances (Kalish
& Lawson, 2007; Sloutsky, 2003; Sloutsky & Fisher, 2004). Of course, claims about poor
inferential reasoning in adults have been challenged (Griffiths & Tenenbaum, 2005), and
there is evidence that adults do consider relations between samples and populations when
drawing inferences from evidence (Lawson & Kalish, 2009; McKenzie & Mikkelsen,
2007). The current study contributes to a growing body of literature suggesting that children
also reason inductively; they show at least some sensitivity to inferential relations between
samples and populations (Gweon, Tenenbaum, & Schulz, 2010; Kushnir, Xu, & Wellman,
2010; Xu & Tenenbaum, 2007b).
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Summary

Learners face a number of challenges when generalizing relations observed in a set
of examples. One class of problems is descriptive: The learner must identify the rela-
tions instantiated in the examples. In the current study descriptive demands involved
moving from a perfect biconditional correlation to a set of partial, simple conditional
relations. The results suggest that this descriptive demand is too great for preschool-
aged children. This performance is consistent with young children’s difficulties learning
simple conditional relations in the absence of revision (Kalish, 2010). It remains for
future studies to determine whether these difficulties reflect representational limitations
or strong assumptions about biconditional relations. Whatever their sources, young
school-aged children were able to handle the descriptive demands of the present belief
revision task.

The second class of problems in belief revision is inferential: How should new evi-
dence be brought to bear on prior beliefs? When this inferential problem was simplified
by making sampling procedures more clear (i.e., Experiment 2) or eliminated by
restricting inferences to the set of observed instances (i.e., the Sample conditions),
school-aged children did make reliable predictions supported by the evidence. Certainly
there are more and less sophisticated ways of dealing with sample characteristics, and
it remains for future research to describe the details of children’s abilities in this
regard. The current study illustrates that school-aged children at least recognize inferen-
tial problems. They may depend on transductive inference but seem to appreciate some
limits of this strategy.

The current study explored one kind of learning problem: changing a relatively simple
belief in light of discrepant evidence. Preschool-aged children seemed unwilling or unable
to abandon their prior belief in biconditionals: They did not describe the examples in terms
of simple conditional relations. For school-aged children the new evidence also raised the
complication of sample selection. Encountering two samples with quite different distribu-
tions of features (different descriptive statistics) seemed to introduce doubt about the popu-
lation. That older children recognized this second complication suggests they understand
belief revision as involving inductive inference. Recognizing the scope of the problem chil-
dren see themselves facing will place researchers in a much better position to understand
children’s solutions.

Notes

1. The actual ‘‘discrepant’’ instances were counterbalanced across participants (e.g.,
half saw six spiky-plain shells, while half saw six smooth-spotted shells).

2. Given the learnable decision rules. This example imagines a learner limited to proto-
type representations.
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